• Title/Summary/Keyword: Vehicle damage

Search Result 673, Processing Time 0.033 seconds

A Study on the Suitability Analysis of Tunnel Access Control for Hazardous Materials Transport Vehicles on the Expressway (위험물질 수송차량의 고속도로 터널통행규제 분석 연구)

  • Hong, Jung Yeol;Choi, Yoon Hyuk;Park, Dong Joo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.3
    • /
    • pp.18-31
    • /
    • 2018
  • Since accidents of hazardous material transport vehicle on roadways cause severe damage in the form of disaster, foreign countries have long been engaged in systematic management and establishment of relevant laws and policies for the road safety. Recently, over 10-kilometer long tunnel, such as Inje-Yangyang Tunnel and Geumjeongsan Tunnel, has been opened on the expressway and the production of various hazardous materials is increasing with the development of chemical technology. However, road laws related to the safe operation of hazardous materials transport vehicles are still lacking, and policy measures for managing them have not been specified. It is an important task to recognize the risk of accidents of hazardous material transport vehicles and to secure road safety by establishing a management plan for road managers. Therefore, this study analyzed the feasibility of the traffic regulation of expressway tunnel in South Korea and suggested a direction for management. The results of this study can be utilized as the primary data for the revision of law related to hazardous materials transport vehicles on roadways and the derivation of optimal route of hazardous materials transport vehicles.

Vibration Characteristics of the Fruit and Vegetables during Transportation (I) - Vibration Charateristics of the Pear by Experimental Analysis - (유통중 청과물의 진동 특성 연구 (I) - 실험적 해석에 의한 배의 진동특성 -)

  • Kim, Man-Soo;Jung, Hyun-Mo;Kim, Ghi-Seok;Park, Chung-Gil
    • Korean Journal of Agricultural Science
    • /
    • v.30 no.2
    • /
    • pp.175-183
    • /
    • 2003
  • Fruit and vegetables are subjected to complex dynamic stresses in the transportation environment. During a long journey from the production area to markets, there is always some degree of vibration present. Vibration inputs are transmitted from the vehicle through the packaging to the fruit. Inside, these cause sustained bouncing of fruits against each other and container wall. These steady state vibration input may cause serious fruit injury, and this damage is particularly severe whenever the fruit inside the package is free to bounce, and is vibrated at its resonance frequency. The determination of the resonance frequencies of the fruit and vegetables may help the packaging designer to determine the proper packaging system providing adequate protection for the fruit, and to understand the complex interaction between the components of fruit when they relate to expected transportation vibration inputs. Instrumentation and technologies are described for determining the vibration response characteristics of the fruits with frequency range 3 to 150 Hz. The computer program for controlling the vibration exciter and the function generator and for measuring the vibration response characteristics of the fruits was developed. The resonance frequency of the pear ranged from 64.5 to 72.2 Hz and the amplitude at resonance was between 1.78 and 2.21 G-rms. The resonance frequency and amplitude at resonance decreased with the increase of the sample mass, and they were slightly affected by mechanical properties such as bioyield deformation and rupture deformation. Regression analysis was performed among the relatively high correlated parameters from the results of correlation coefficient analysis.

  • PDF

Genotoxicity on $21{\alpha}-and\;{\beta}-methylmelianodiol$, a Component of Poncirus trifoliata, in Bacterial and Mammalian Cells

  • Ryu, Jae-Chun;Kim, Youn-Jung;Kim, Mi-Soon;Kim, Min-Ji;Sarma, Sailendra Nath;Lee, Seung-Ho
    • Molecular & Cellular Toxicology
    • /
    • v.1 no.3
    • /
    • pp.172-178
    • /
    • 2005
  • [ $21{\alpha}$ ]- and ${\beta}$-Methylmelianodiol were isolated as the inhibitor of IL-5 bioactivity from Poncirus tripoliata. To develope as an anti-septic drug, the genotoxicity of $21{\alpha}\;-and\;{\beta}-methylmelianodiol$ was subjected to high throughput toxicity screening (HTTS) because they revealed strong IL-5 inhibitory activity and limitation of quantity. Mouse lymphoma thymidine kinase ($tk^{+/-}$) gene assay (MOLY), single cell gel electrophoresis (Comet) assay in mammalian cells and Ames reverse mutation assay in bacterial system were used as simplified, inexpensive, short-term in vitro screening tests in our laboratory. These compounds are not mutagenic in S. typhimurium TA98 and TA100 strains both in the presence and absence of metabolic activation. Before performing the comet assay, $IC_{20}$ of $21{\alpha}-methylmelianodiol$ was determined the concentration of $25.51\;{\mu}g/mL\;and\;21.99\;{\mu}g/mL$ with and without S-9, respectively. Also $21{\beta}-methylmelianodiol$ was determined the concentration of $24.15\;{\mu}g/mL\;and\;\;22.46\;{\mu}g/mL$ with and without S-9, respectively. In the comet assay, DNA damage was not observed both $21{\alpha}-methylmelianodiol\;and\;21{\beta}-methylmelianodiol$ in mouse lymphoma cell line. Also, the mutant frequencies in the treated cultures were similar to the vehicle controls, and none of $21{\alpha}\;-and\;{\beta}-methylmelianodiol$ with and without S-9 doses induced a mutant frequency over. twice the background. It is suggests that $21{\alpha}\;-and\;{\beta}-methylmelianodiol$ are non-mutagenic in MOLY assay. The results of this battery of assays indicate that $21{\alpha}\;-and\;{\beta}-methylmelianodiol$ have no genotoxic potential in bacterial or mammalian cell systems. Therefore, we suggest that $21{\alpha}\;-and\;{\beta}-methylmelianodiol$, as the optimal candidates with both no genotoxic potential and IL-5 inhibitory effects must be chosen.

An Experimental Study on the Automobile Engine Room Fire Using the Extinguishing Agents (소화약제를 이용한 자동차 엔진룸 화재 실험에 관한 연구)

  • Han, Yong-Taek;Kim, Dong-Ho;Kwon, Sung-Pil
    • Fire Science and Engineering
    • /
    • v.28 no.4
    • /
    • pp.1-7
    • /
    • 2014
  • Several complex devices and equipments are installed in the car's engine room, including various kind of oils or other flammable materials. So re-ignition is very likely to take place in it. In addition, it is restrictive for the driver or the occupant to open the bonnet and to spray the fire extinguisher in the engine room due to the high possibility of explosion. Therefore, a fire extinguishing system, which can detect a fire and inject the fire extinguishing agent to extinguish it, and fire extinguishing agents including HFC-227ea, which can stand the high temperature within the engine room and hold the viscosity sufficient to keep it in the kind of foam, were developed and tested. And the suffocation effect and the cooling effect come from the fire extinguishing principle of the foam fire extinguishing agent and the inhibiter catalyst effect come from the one of HFC-227ea was led simultaneously, and fire extinguishing agents without the secondary damage caused by residuals after the fire extinguishment like a case of the powder fire extinguishing agent, were developed. And experiments using a vehicle collision after the discharge is complete, foreign material can be removed without extinguishing the advantage that experimental results obtained.

Failure Analysis and Heat-resistant Evaluation of Electric Fuel Pump for Combat Vehicle (전투차량용 전기식 연료펌프의 고장분석 및 내열성능 평가)

  • Kwak, Daehwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.634-640
    • /
    • 2020
  • Failure analysis and heat-resistant were performed for an electric fuel pump that is installed in the fuel tank to transfer fuel to the engine of combat vehicles. The fuel pump with a DC motor was disassembled and inspected to determine the cause of failure. The failure phenomenon was classified into three categories based on observations of the inside of the housing: burnt winding, quick brush abrasion, and fuel leak into the pump. Based on the inspection results, it was estimated that overheating was the main cause of failure. The thermal test was conducted under the no-load condition in 24 hours, and the thermal sensor was installed on the stator surface and the brush holder to check the possibility of damage to the winding due to overheating. When the ambient temperature of the fuel pump was set to 68 ℃, the stator temperature increased to 135.9 ℃, and the winding of the motor was almost damaged. The test results confirmed the lack of heat resistance of fuel pump windings, and suggested that the type F of insulation class (below 155 ℃) of the windings and varnish should be replaced with type C or higher that can be used above 180 ℃.

Secondary Flow Patterns of Liquid Ejector with Computational Analysis (액체상 이젝터의 2차측 액체 송출량 특성 전산해석)

  • Kwon, Kwisung;Yun, Jinwon;Sohn, Inseok;Seo, Yongkyo;Yu, Sangseok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.2
    • /
    • pp.183-190
    • /
    • 2015
  • An ejector is a type of non-powered pump that is used to supply a secondary flow via the ejection of a primary flow. It is utilized in many industrial fields, and is used for fueling the vehicle because of less failures and simple structure. Since most of ejectors in industry are gas-to-gas and liquid to gas ejector, many research activities have been reported in optimization of gas ejector. On the other hand, the liquid ejector is also applied in many industry but few research has been reported. The liquid ejector occurs cavitation, and it causes damage of parts. Cavitation has bees observed at the nozzle throat at the specified pressure. In this study, a two-dimensional axisymmetric simulation of a liquid-liquid ejector was carried out using five different parameters. The angle of the nozzle plays an important role in the cavitation of a liquid ejector, and the performance characteristics of the flow ratio showed that an angle of $35^{\circ}$ was the most advantageous. The simulation results showed that the performance of the liquid ejector and the cavitation effect have to be considered simultaneously.

Development of Freeway Incident Duration Prediction Models (고속도로 돌발상황 지속시간 예측모형 개발)

  • 신치현;김정훈
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.3
    • /
    • pp.17-30
    • /
    • 2002
  • Incident duration prediction is one of the most important steps of the overall incident management process. An accurate and reliable estimate of the incident duration can be the main difference between an effective incident management operation and an unacceptable one since, without the knowledge of such time durations, traffic impact can not be estimated or calculated. This research presents several multiple linear regression models for incident duration prediction using data consisting of 384 incident cases. The main source of various incident cases was the Traffic Incident Reports filled out by the Motorist Assistant Units of the Korea Highway Corporation. The models were proposed separately according to the time of day(daytime vs. nighttime) and the fatality/injury incurred (fatality/injury vs. property damage only). Two models using an integrated dataset, one with an intercept and the other without it, were also calibrated and proposed for the generality of model application. Some findings are as follows ; ?Variables such as vehicle turnover, load spills, the number of heavy vehicles involved and the number of blocked lanes were found to significantly affect incident duration times. ?Models, however, tend to overestimate the duration times when a dummy variable, load spill, is used. It was simply because several of load spill incidents had excessively long clearance times. The precision was improved when load spills were further categorized into "small spills" and "large spills" based on the size of vehicles involved. ?Variables such as the number of vehicles involved and the number of blocked lanes found not significant when a regression model was calibrated with an intercept. whereas excluding the intercept from the model structure signifies those variables in a statistical sense.

Study on the Optimal Construction Method for the Compaction Method of Hydraulic Filling in Metropolitan Areas (도심지 물다짐 공법의 적정 시공방법에 관한 연구)

  • Jeong, Dal-Yeong;Jang, Jong-Hwan;Chung, Jin-Hyuck
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.2
    • /
    • pp.175-181
    • /
    • 2020
  • This paper suggests a proper hydraulic filling method in downtown areas. Road subsidence on roadways and sidewalks in downtown areas can result in vehicle damage and casualties. The representative cause of road subsidence is the fraudulent construction in nearby construction sites. A deficiency of excavation restoration causes approximately 25~49% of subsidence. This is performed by equipment or manpower. Hydraulic filling is used in backfilling narrow pipe conduits and spaces between structures. On the other hand, standard specifications and quality assurance standards regarding hydraulic filling principles and construction conditions are insufficient. Therefore, in-door model experiments on hydraulic filling principles, backfilling material, and compaction efficiency were performed. This paper suggests guidelines by investigating and analyzing construction status. In conclusion, thrown backfilling material has a particle size distribution and permeability coefficient as major factors, and detailed standards of the factors are suggested. To improve the compaction efficiency, 90% or more, compaction by the floor should be in units of 0.3m while ensuring a lower drainage layer. When an H-shape stabilizing pile is pulled out after filling, additional hydraulic filling should be in the disturbance range.

A Development of 3D Modeling-based Survivability Analysis System for Armored Fighting Vehicle using Importance of Components (부품의 중요도를 활용한 3차원 전차 모델 기반 생존성 분석 시스템 개발)

  • Hwang, Hun-Gyu;Lee, Jae-Wook;Lee, Jae-Woong;Lee, Jang-Se
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.5
    • /
    • pp.1269-1276
    • /
    • 2015
  • The mission capability of tank depends on its survivability. The survivability is ability for protection and tolerance by damage from threats. To improve the survivability of tank, we need an effectiveness analysis for loss of components, and accomplish performance enhancement using the result of analysis. In this paper, we develop a survivability analysis system for tank based on the importance. The importance numerically represents weight of each component which consisting of whole tank, also the importance is basic method of quantitative survivability analysis. To do this, we assign weight values to each component of tank, compose a weight tree, apply the importance calculation equation, and analyze the survivability of tank. Also we develop the system that consists of component structuralization and weight value setting program and survivability analysis and visualization program, and evaluate the system using implemented 3D CAD models of components of tank. The developed system apply to arrangement components.

Effects on Response of Nervous Tissue to Samuljetong-tang after Damaged by Taxol Treatment or Sciatic Nerve Injury (사물제통탕(四物除痛湯)이 Taxol 처리 및 좌골신경 압좌 손상 후 신경조직 변화에 미치는 영향)

  • Youn, Sung-Sik;Kim, Chul-Jung;Cho, Chung-Sik
    • The Journal of Internal Korean Medicine
    • /
    • v.33 no.2
    • /
    • pp.126-144
    • /
    • 2012
  • Background : Peripheral nerves more rapidly recover than central nerves. However, it has been known that the degree of reaction of axons of peripheral nerves is affected by distinctive characteristics of axons and environmental factors near the axons. Taxol is a widely used medicine as for ovarian, breast, lung and gastric cancer. However it causes patients difficulties under treatment due to its toxic and side effects, which include persistent pain. Objectives : This study reviewed how SJT extract in vitro and in vivo affects nerve tissues of a sciatic nerve damaged by Taxol. It also studied how SJT extract in vivo affects axons of the sciatic nerve after the sciatic nerve was damaged by pressing. Methods : After vehicle, Taxol, and Taxol plus SJT were treated respectively for tissue of the sciatic nerve in vitro and then tissues were observed using Neurofilament 200, Hoechst, ${\beta}$-tubulin, $S100{\beta}$, caspase-3 and anti-cdc2. SJT was also oral medicated by injecting Taxol into the sciatic nerve of in vivo rats. Tissues of the sciatic nerve and axons of DRG sensory nerves were then observed using Neurofilament 200, Hoechst, ${\beta}$-tubulin, $S100{\beta}$, caspase-3 and p-Erk1/2. After inflicting pressing damage to the sciatic nerve of in vivo rats, tissues of the sciatic nerve and DRG sensory nerve were observed using Neurofilament 200, Hoechst, $S100{\beta}$, caspase-3, anti-cdc2, phospho-vimentin, ${\beta}1$-integrin, Dil reverse tracking and p-Erk1/2. Results : The group of in vitro Taxol plus SJT treatment had meaningful effects after sciatic nerve tissue was damaged by Taxol. The group of in vivo SJT treatment had effects of regenerating Schwann cells and axons which were damaged by Taxol treatment. The group of in vivo SJT had effects of regenerating axons in damaged areas after the sciatic nerve was damaged by pressing, and also had variations of distribution in Schwann cells at DRG sensory nerves and axons. Conclusions : This study confirmed that SJT treatment is effective for growth of axons in the sciatic nerve tissues and improvement of Schwann cells after axons of the sciatic nerve tissues was damaged. After tissues of sciatic nerve was damaged by pressing in vivo, SJT treatment had effects on promoting regeneration of axon in the damaged area and reactional capabilities in axons of DRG sensory nerves.