• Title/Summary/Keyword: Vehicle damage

Search Result 669, Processing Time 0.026 seconds

Characteristics of Wheel Tread for Urban Train Based on Contact Positions (접촉위치에 따른 도시철도 차륜 답면의 특성 변화)

  • Kwon, Seok-Jin;Noh, Hang-Nak;Nam, Yoon-Su;Seo, Jung-Won;Lee, Dong-Hyung
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.6
    • /
    • pp.524-529
    • /
    • 2008
  • The damaged wheel in railway vehicle would cause a poor ride comfort, a rise in the maintenance cost and even fracture of the wheel, which then leads to a tremendous social and economical cost. The defect initiation and crack propagation in wheel may result in the damage of the railway vehicle or derailment. Therefore, it is important to evaluate the characteristics of the wheel tread. In the present paper, the characteristics of wheel tread based on contact positions, running distance and brake pattern are evaluated. The result shows that the damaged wheel tread is remarkably depended on the contact positions between wheel and rail.

An Overloaded Vehicle Identifying System based on Object Detection Model (객체 인식 모델을 활용한 적재불량 화물차 탐지 시스템 개발)

  • Jung, Woojin;Park, Yongju;Park, Jinuk;Kim, Chang-il
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.562-565
    • /
    • 2022
  • Recently, the increasing number of overloaded vehicles on the road poses a risk to traffic safety, such as falling objects, road damage, and chain collisions due to the abnormal weight distribution, and can cause great damage once an accident occurs. However, this irregular weight distribution is not possible to be recognized with the current weight measurement system for vehicles on roads. To address this limitation, we propose to build an object detection-based AI model to identify overloaded vehicles that cause such social problems. In addition, we present a simple yet effective method to construct an object detection model for the large-scale vehicle images. In particular, we utilize the large-scale of vehicle image sets provided by open AI-Hub, which include the overloaded vehicles from the CCTV, black box, and hand-held camera point of view. We inspected the specific features of sizes of vehicles and types of image sources, and pre-processed these images to train a deep learning-based object detection model. Finally, we demonstrated that the detection performance of the overloaded vehicle was improved by about 23% compared to the one using raw data. From the result, we believe that public big data can be utilized more efficiently and applied to the development of an object detection-based overloaded vehicle detection model.

  • PDF

Study on Convergence Technique through Structural Analysis on the Axle of Railway Vehicle (철도 차량의 축에 대한 구조 해석을 통한 융합 기술연구)

  • Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.6 no.1
    • /
    • pp.93-101
    • /
    • 2015
  • As the axle at the vehicle of railway has the important role for safe running, the strength, and impact-proof, safety factor, stress and deformation must be considered. There are the simulation models of 1 and 2 in this study. These models are investigated by performing the convergence technique through the design, the structural and fatigue analyses with CATIA and ANSYS. As the maximum deformation and equivalent stress of model A are lower than those of model B, model A has more durability than model B. The durability to prevent the damage can be investigated by applying the result of this study into the part design of the vehicle of rail road. And it is possible to be grafted onto the convergence technique at design and show the esthetic sense.

Analysis of Bus Accident Severity Using K-Means Clustering Model and Ordered Logit Model (K-평균 군집모형 및 순서형 로짓모형을 이용한 버스 사고 심각도 유형 분석 측면부 사고를 중심으로)

  • Lee, Insik;Lee, Hyunmi;Jang, Jeong Ah;Yi, Yongju
    • Journal of Auto-vehicle Safety Association
    • /
    • v.13 no.3
    • /
    • pp.69-77
    • /
    • 2021
  • Although accident data from the National Police Agency and insurance companies do not know the vehicle safety, the damage level information can be obtained from the data managed by the bus credit association or the bus company itself. So the accident severity was analyzed based on the side impact accidents using accident repair cost. K-means clustering analysis separated the cost of accident repair into 'minor', 'moderate', 'severe', and 'very severe'. In addition, the side impact accident severity was analyzed by using an ordered logit model. As a result, it is appeared that the longer the repair period, the greater the impact on the severity of the side impact accident. Also, it is appeared that the higher the number of collision points, the greater the impact on the severity of the side impact accident. In addition, oblique collisions of the angle of impact were derived to affect the severity of the accident less than right angle collisions. Finally, the absence of opponent vehicle and large commercial vehicles involved accidents were shown to have less impact on the side impact accident severity than passenger cars.

Modal identification of time-varying vehicle-bridge system using a single sensor

  • Li, Yilin;He, Wen-Yu;Ren, Wei-Xin;Chen, Zhiwei;Li, Junfei
    • Smart Structures and Systems
    • /
    • v.30 no.1
    • /
    • pp.107-119
    • /
    • 2022
  • Modal parameters are widely used in bridge damage detection, finite element model (FEM) updating and design optimization. However, the conventional modal identification approaches require large number of sensors, enormous data processing workload, but normally result in mode shapes with low accuracy. This paper proposes a modal identification method of time-varying vehicle-bridge system using a single sensor. Firstly, the essential physical relationship between the instantaneous frequency of the vehicle-bridge system and the bridge mode shapes are derived. Subsequently, based on the synchroextracting transform, the instantaneous frequency of the system is tracked through the dynamic response collected by a single sensor, and further the modal parameters are estimated by using the derived physical relationship. Then numerical and experimental examples are conducted to examine the feasibility and effectiveness of the proposed method. Finally, the modal parameters identified by the proposed method are applied in bridge FEM updating. The results manifest that the proposed method identifies the modal parameters with high accuracy via a single sensor, and can provide reliable data for the FEM updating.

A Study on Traffic Accident Reconstruction through Vehicle Crash Test (충돌시험을 통한 교통사고 재현 연구)

  • Kim, Guanhee;Lim, Jonghun;Park, Insong;Chun, Youngbum;Cho, Chongdu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.6
    • /
    • pp.58-63
    • /
    • 2013
  • It is very difficult to evaluate the impact speed, who caused the accident and what the injury risk of the vehicle occupants was from the outcome of the accident. That's the main reason why there are so many insurance fraud related to vehicle accident. In this study, a vehicle crash accident suspected to an insurance fraud had been reconstructed to evaluate crash speed and the relationship between the crash accident and passenger injury risk. To do this, the scene was reconstructed based on accident investigation report and three vehicle crash tests were done at 27kph, 37kph and 70kph. The crash speed of 27kph and 37kph were chosen based on the damaged vehicle and 70kph was chosen based on the driver's statement. Based on the damage of vehicle and dummy injury measure, impact speed is estimated around 20 to 30kph and the dummy measures show that the passengers are not seems to be severely injured in this speed range.

A Study on the Vibration Decibel Related to the Shape of Rumble Strip Located on the Highway Tollgate (고속도로 톨게이트 근처 럼블스트립 형태에 따른 진동 데시벨 연구)

  • Kim, Do Wan;Jang, Yeong Sun;Mun, Sung Ho
    • International Journal of Highway Engineering
    • /
    • v.15 no.6
    • /
    • pp.93-101
    • /
    • 2013
  • PURPOSES : The rumble strip installed at the highway near the tollgate has the purpose to reduce the vehicle velocity or prevent sleepiness by awakening people to the danger. These rumble strip has different vibration decibel from the rumble strip shapes, resulting in some fatigue damage to human because a driver suffers from a lot of stress and displeasure. In this connection, the objective of this paper is to analyze the vibration decibel perceived by a driver in the vehicle under some conditions. METHODS : The vibration decibel conveyed from the tire can be analyzed. The frequency analysis methods were used according to DFT (Discrete Fourier Transform) analysis, FFT (Fast Fourier Transform) analysis, CPB (Constant Percentage Bandwidth) analysis. But the frequency analysis method in this paper is the 1/24 OCT(Octave) band analysis because of the convenience of the analysis and the overall vibration amplitude along the frequency. RESULTS : By using the results of the vibration decibel after analyzing the 1/24 OCT band analysis, these results can be compared from some conditions (e.g., rumble strip shape, uniform velocity of a vehicle, road condition, mass of a vehicle). As a result, the numerical values of decibel are not directly proportional to the vehicle velocity. CONCLUSIONS : At the condition that a vehicle is passing by the rumble strip, the value of a vibration decibel at the rumble strip of the cylinder shape is smaller than the rumble strip of rectangular shape regardless of the rumble strip depth and width. At the mass condition, the more a vehicle is massive, the more the vibration decibel increases. At the road condition, the vibration decibel at the wet road is smaller than the value at dry road condition.

Analysis for Traffic Accident of the Bus with Advanced Driver Assistance System (ADAS) (첨단안전장치 장착 버스의 사고사례 분석)

  • Park, Jongjin;Choi, Youngsoo;Park, Jeongman
    • Journal of Auto-vehicle Safety Association
    • /
    • v.13 no.3
    • /
    • pp.78-85
    • /
    • 2021
  • Recently a traffic accident of heavy duty vehicles under the mandatory installation of ADAS (Advanced Driver Assistance System) is often reported in the media. Heavy duty vehicle accidents are normally occurring a high number of passenger's injury. According to report of Insurance Institute for Highway Safety, FCW (Forward Collision Warning) and AEB (Automatic Emergency Braking) were associated with a statistically significant 12% reduction in the rate of police-reportable crashes per vehicle miles traveled, and a significant 41% reduction in the rear-end crash rate of large trucks. Also many countries around the world, including Korea, are studying the effects of ADAS installation on accident reduction. Traffic accident statistics of passenger vehicle for business purpose in TMACS (Traffic safety information Management Complex System in Korea) tends to remarkably reduce the number of deaths due to the accident (2017(211), 2018(170), 2019(139)), but the number of traffic accidents (2017(8,939), 2018(9,181), 2019(10,095)) increases. In this paper, it is introduced a traffic accident case that could lead to high injury traffic accidents by being equipped with AEB in a bus. AEB reduces accidents and damage in general but malfunction of AEB could occur severe accident. Therefore, proper education is required to use AEB system, simply instead of focusing on developing and installing AEB to prevent traffic accidents. Traffic accident of AEB equipped vehicle may arise a new dispute between a driver's fault and vehicle defect. It is highly recommended to regulate an advanced event data recorder system.

A case study of protecting bridges against overheight vehicles

  • Aly, Aly Mousaad;Hoffmann, Marc A.
    • Steel and Composite Structures
    • /
    • v.43 no.2
    • /
    • pp.165-183
    • /
    • 2022
  • Most transportation departments have recognized and developed procedures to address the ever-increasing weights of trucks traveling on bridges in a service today. Transportation agencies also recognize the issues with overheight vehicles' collisions with bridges, but few stakeholders have definitive countermeasures. Bridges are becoming more vulnerable to collisions from overheight vehicles. The exact response under lateral impact force is difficult to predict. In this paper, nonlinear impact analysis shows that the degree of deformation recorded through the modeling of the unprotected vehicle-girder model provides realistic results compared to the observation from the US-61 bridge overheight vehicle impact. The predicted displacements are 0.229 m, 0.161 m, and 0.271 m in the girder bottom flange (lateral), bottom flange (vertical), and web (lateral) deformations, respectively, due to a truck traveling at 112.65 km/h. With such large deformations, the integrity of an impacted bridge becomes jeopardized, which in most cases requires closing the bridge for safety reasons and a need for rehabilitation. We proposed different sacrificial cushion systems to dissipate the energy of an overheight vehicle impact. The goal was to design and tune a suitable energy absorbing system that can protect the bridge and possibly reduce stresses in the overheight vehicle, minimizing the consequences of an impact. A material representing a Sorbothane high impact rubber was chosen and modeled in ANSYS. Out of three sacrificial schemes, a sandwich system is the best in protecting both the bridge and the overheight vehicle. The mitigation system reduced the lateral deflection in the bottom flange by 89%. The system decreased the stresses in the bridge girder and the top portion of the vehicle by 82% and 25%, respectively. The results reveal the capability of the proposed sacrificial system as an effective mitigation system.

A Study on the Monitoring Method of Landslide Damage Area Using UAV (UAV를 이용한 산사태 피해지역 모니터링 방법에 관한 연구)

  • Kim, Sung-Bo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.6_2
    • /
    • pp.1043-1050
    • /
    • 2020
  • In this study, a study was presented on the monitoring technique of landslide area using UAV. In the case of disaster investigation using drone mapping, it can be used at various disaster sites. The mission can be carried out at various disaster sites, including surveys of damage to mountainous areas caused by landslides, building collapses surveys of flood damage, typhoons, earthquakes. The damage investigation plan using drone mapping is expected to be highly utilized at disaster sites where investigators cannot access it like in mountainous areas and where it is difficult to conduct direct damage investigations at the site. Drone mapping technology has many advantages in terms of disaster follow-up, such as recovery. Compared to the existing survey system, which was mainly carried out manually, the investigation time can be drastically reduced, and it can also respond to disaster sites that are difficult to carry out or are difficult to access directly. In addition, it is possible to establish and guide spatial data at the disaster site based on accurate mapping data from the time of the disaster, which has considerable strength in managing the situation of the disaster site, selecting priority areas for recovery, and establishing recovery plans. As such, drone mapping is a technology that can be used in a wide range of sites along with natural disasters and social disasters. If a damage investigation system is established through this, it is believed that it will contribute significantly to the rapid establishment of recovery plans along with the investigation of disaster response time and extent of damage recovery.