• Title/Summary/Keyword: Vehicle collision

Search Result 582, Processing Time 0.022 seconds

Driving Vehicle Detection and Distance Estimation using Vehicle Shadow (차량 그림자를 이용한 주행 차량 검출 및 차간 거리 측정)

  • Kim, Tae-Hee;Kang, Moon-Seol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.8
    • /
    • pp.1693-1700
    • /
    • 2012
  • Recently, the warning system to aid drivers for safe driving is being developed. The system estimates the distance between the driver's car and the car before it and informs him of safety distance. In this paper, we designed and implemented the collision warning system which detects the car in front on the actual road situation and measures the distance between the cars in order to detect the risk situation for collision and inform the driver of the risk of collision. First of all, using the forward-looking camera, it extracts the interest area corresponding to the road and the cars from the image photographed from the road. From the interest area, it extracts the object of the car in front through the analysis on the critical value of the shadow of the car in front and then alerts the driver about the risk of collision by calculating the distance from the car in front. Based on the results of detecting driving cars and measuring the distance between cars, the collision warning system was designed and realized. According to the result of applying it in the actual road situation and testing it, it showed very high accuracy; thus, it has been verified that it can cope with safe driving.

A Joystick Driving Control Algorithm with a Longitudinal Collision Avoidance Scheme for an Electric Vehicle

  • Won, Mooncheol
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.10
    • /
    • pp.1399-1410
    • /
    • 2003
  • In this paper, we develop a joystick manual driving algorithm for an electric vehicle called Cycab. Cycab is developed as a public transportation vehicle, which can be driven either by a manual joystick or an automated driving mode. The vehicle uses six motors for driving four wheels, and front/rear steerings. Cycab utilizes one industrial PC with a real time Linux kernel and four Motorola MPC555 micro controllers, and a CAN network for the communication among the five processors. The developed algorithm consists of two automatic vehicle speed control algorithms for normal and emergency situations that override the driver's joystick command and an open loop torque distribution algorithm for the traction motors. In this study, the algorithm is developed using SynDEx, which is a system level CAD software dedicated to rapid prototyping and optimizing the implementation of real-time embedded applications on distributed architectures. The experimental results verify the usefulness of the two automatic vehicle control algorithms.

Analysis of Pedestrian-thrown Distance Pattern by Pedestrian-vehicle Collision Position (보행자와 승용차의 충돌 위치에 따른 전도거리 패턴 분석)

  • Kwon, Sun-min;Chang, Hyun-bong
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.1
    • /
    • pp.90-100
    • /
    • 2017
  • This paper investigates pedestrian-thrown distance pattern by pedestrian-vehicle collision position by madymo-simulation. The simulation were performed for every 2.5 cm interval between center and edge of bumper for various vehicle speeds and vehicle shapes. As a result, two critical points where thrown distance change rapidly were found. First critical point locate where pedestrian's shoulder do not contact the vehicle. Second point locate where the center of gravity of pedestrian are close to edge of bumper. Between 1st and 2nd critical points, thrown distance decrease rapidly where collision points move to the edge of vehicle. In other cases, the thrown distance does not change rapidly. This result gives more accurate guideline for pedestrian collision in traffic safety.

A Study on Minimum Speed of Vehicle in Collision between Pedestrian Head and Windshield (보행자의 두부(頭部)가 승용차의 전면유리에 닿는 최저속도에 관한 연구)

  • Shim, Jae-kwi;Lee, Sangsoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.15 no.5
    • /
    • pp.54-61
    • /
    • 2016
  • This paper try to identify the minimum speed of vehicles in collision between pedestrian head and windshield at vehicle-pedestrian accidents. The MADYMO program was used with NF Sonata vehicle and pedestrian in height of 160cm, 170cm, and 180cm. From the simulation results, it was found that the minimum speed of vehicle was different for each pedestrian height : 49km/h for 160cm, 41km/h for 170cm, and 29km/h for 180cm. The results could be used in speed estimating process when there is a collision trace between pedestrian head and windshield at vehicle- pedestrian accident investigation.

The Design of Evading Collision System of Unman Vehicle (무인 이동체의 충돌 회피 시스템 설계)

  • Kim, Tae-Hyoung;Jang, Jong-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.254-255
    • /
    • 2016
  • The Human have sought convenience through advancing Science skill, The Generation that unman control all machine have came. the unman - vehicle have used and applied flight, ship, car, manufacturing all over the world. plus which, that is researching. but pros and cons of unman - vehicle is that unman control machine, It mean that unman - vehicle have high possibility which have collision with obstacle on driving. I will show you that this evading collision will be made from fuzzy control and video recognition and sensor recognition.I look for good effect for this system.

  • PDF

Estimation of the Water deer (Hydropotes inermis) Roadkill Frequency in South Korea (우리나라의 고라니 (Hydropotes inermis) 로드킬 발생건수 추정)

  • Choi, Tae-Young
    • Ecology and Resilient Infrastructure
    • /
    • v.3 no.3
    • /
    • pp.162-168
    • /
    • 2016
  • The objective of this study was to estimate the roadkill occurrence of water deer (Hydropotes inermis), a representative roadkill species in South Korea. For this estimation, I analyzed national road statistics and roadkill statistics, and then reviewed case studies that estimated the number of deer roadkill in other countries to apply the estimating methods to our case. As a result, the estimated number of water deer vehicle collision was at least 60,000 per year in South Korea.

Development of a Real-Time Collision Avoidance Algorithm for eXperimental Autonomous Vehicle (무인자율차량의 실시간 충돌 회피 알고리즘 개발)

  • Choe, Tok-Son
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.7
    • /
    • pp.1302-1308
    • /
    • 2007
  • In this paper, a real-time collision avoidance algorithm is proposed for experimental Autonomous Vehicle(XAV). To ensure real-time implementation, a virtual potential field is calculated in one dimensional space. The attractive force is generated by the steering command either transmitted in the remote control station or calculated in the Autonomous Navigation System(ANS) of the XAV. The repulsive force is generated by obstacle information obtained from Laser Range Finder(LRF) mounted on the XAV. Using these attractive and repulsive forces, modified steering, velocity and emergency stop commands are created to avoid obstacles and follow a planned path. The suggested algorithm is inserted as one component in the XAV system. Through various real experiments and technical demonstration using the XAV, the usefulness and practicality of the proposed algorithm are verified.

A Study on the 4WS Control Method with the Effect of Steering Wheel Angular Velocity (핸들조향속도를 고려한 4WS 제어방법에 관한 연구)

  • 이영화;김석일;김대영;김동룡
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.3
    • /
    • pp.168-175
    • /
    • 1996
  • Except the collision avoidance performance related to the rapid lane change, the 4WS vehicle has better dynamic stability and handling performance than the conventional 2WS vehicle which has close relation with the driver's safety, a 4WS conrol method with the effect of steering wheel angular velocity is proposed based on the fact that the driver steers abruptly the steering wheel to avoid the collision. And the effects of the proposed 4WS control method are investigated on the dynamic stability and handling performance by using the ISO lane change test code.

  • PDF

Automobile Collision Reconstruction Using Post-Impact Velocities and Crush Profile (충돌 후 속도와 충돌 변형으로부터 자동차 충돌 재구성)

  • 한인환
    • Journal of Korean Society of Transportation
    • /
    • v.18 no.4
    • /
    • pp.107-115
    • /
    • 2000
  • We suggest a method which solves the planar, two vehicle collision reconstruction problem. The method based on the Principle of impulse and momentum determines the pre-impact velocity components from Post-impact velocity components, vehicle Physical data and collision geometry. A novel feature is that although the impact coefficients such as the restitution coefficient and the impulse ratio are unknown, the method can estimate automatically the coefficients and calculate the pre-impact velocity components. This reverse calculation is important for vehicle accident reconstruction, since the pre-impact velocities are unknown and Post-impact Phase is the starting Point in a usual collision analysis. However. an inverse solution is not always Possible with the analytical rigid-body impact model. Mathematically, one does not exist under the common velocity condition. On the other hand, our method has a capability of reverse calculation under the condition if the absorbed energy during the collision process can be estimated using the crush profile. To validate the developed collision reconstruction a1gorithm, we use car-to-car collision test results. The analysis and experimental results agree well in the impact coefficients and the Pre-impact velocity components.

  • PDF

Analysis for Traffic Accidents against Car-Pedestrian on Simulation (시뮬레이션을 통한 차대 보행자의 교통사고 분석)

  • Chae, Hee-Hong;Lim, Jong-Han
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.3
    • /
    • pp.115-121
    • /
    • 2012
  • In spite of serious injuries caused by traffic accidents of car-pedestrian, the dispute is constantly occurring and economic losses and mental suffering is escalating since the cause of accidents is not scientifically identified. This study reviewed vehicle dynamics, driving dynamics, collision dynamics, traffic and road engineering for traffic accidents analysis based on traffic accidents related physically objective evidence and analysed the cause of accidents by getting results which applied vehicle initial collision velocity before collision, processing trajectory, collision stance, vehicle velocity before & after collision and parameter by using PC-Crash program. I found that skid mark and collision velocity of car-pedestrian had the error of 11.2%, 2,27% compared to theoretical values.