• 제목/요약/키워드: Vehicle camera system

검색결과 425건 처리시간 0.024초

심해용 ROV를 위한 수중 원격 영상제어 시스템 개발 (Developed Ethernet based image control system for deep-sea ROV)

  • 김현희;정기민;박철수;이경창;황용연
    • 한국산업융합학회 논문집
    • /
    • 제21권6호
    • /
    • pp.389-394
    • /
    • 2018
  • Remotely operated vehicle(ROV) and autonomous underwater vehicle(AUV) have been used for underwater surveys, underwater exploration, resource harvesting, offshore plant maintenance and repair, and underwater construction. It is hard for people to work in the deep sea. Therefore, we need a vision control system of underwater submersible that can replace human eyes. However, many people have difficulty in developing a deep-sea image control system due to the deep sea special environment such as high pressure, brine, waterproofing and communication. In this paper, we will develop an Ethernet based remote image control system that can control the image mounted on ROV.

환경 변화에 강인한 방범용 차량 검지 시스템 (A Vehicle Detection System Robust to Environmental Changes for Preventing Crime)

  • 배성호;홍준의
    • 한국멀티미디어학회논문지
    • /
    • 제13권7호
    • /
    • pp.983-990
    • /
    • 2010
  • 외부 환경에서의 영상처리 기술은 환경에 매우 민감하여 외부환경이 급격하게 변화할 때마다 정확도가 많이 떨어지는 경향이 있다. 본 논문에서는 다양한 변화가 일어나는 실외환경에서 영상처리 기술을 이용한 방범용 차량 검지 및 추적 시스템을 제안한다. 방범용 카메라검지기는 하나의 차선내에서 차량을 검지하고 추적하기 때문에 차량의 윤곽보다는 차량의 특징 영역을 분리하는 것이 중요하다. 제안한 시스템은 차량 진입의 판단을 광류를 통하여 검지하며, 차량의 전조등, 본넷, 전면창, 루프 등으로 영역을 분류하여 차량을 추적한다. 실험을 통하여 제안한 시스템이 차량의 종류, 속도 및 시간 의 환경 변화에도 강인함을 확인하였다.

Kano 모델을 활용한 V2E 성능확보기술 개발 전략 (Strategy for V2E Performance Assurance Technology Development Using the Kano Model)

  • 장정아;손성호;이정기
    • 자동차안전학회지
    • /
    • 제14권2호
    • /
    • pp.75-82
    • /
    • 2022
  • Automated vehicles (AVs) are coming to our roadways. In practice, there are still several challenges that can impede the AV sensors are polluted on various road conditions. In this paper, we propose a strategy for V2E performance assurance technology using Kano model. We are developing the vehicle sensor cleaning system about the three types of commonly used sensors: camera, radar, and LiDAR. Surveys were carried out in 30 AV's experts on quality characteristics about V2E performance assurance technology. As a result, the Kano model developed to verify a major requirement of autonomous vehicle's sensor cleaning system. It is expected that the Kano model will be actively used to verify the importance of V2E development strategy.

고속 하이비젼 카메라 기술을 이용한 철도차량 차륜형상 측정에 관한 연구 (A study on Profile Measurement for Railway Wheels using High Speed Camera and Vision Technology)

  • 원시태;권석진;허성범
    • 한국철도학회논문집
    • /
    • 제18권1호
    • /
    • pp.1-7
    • /
    • 2015
  • 현재 국내 철도차량에 사용되고 있는 주요 부품의 유지와 보수를 위한 검사장비는 대부분 외국으로부터 수입하여 사용하고 있다. 특히 차륜형상 측정장비 등과 같은 일부 검사장비는 외국의 장비를 벤치 마킹하여 제작한 국산화 장비를 설치하여 사용하고 있으나, 이들 국산화 장비는 신뢰성과 성능에 많은 문제점이 발생하고 있는 실정이다. 따라서 본 연구는 철도차량 차륜의 유지 및 보수를 위한 차륜형상 측정장치의 정밀도와 신뢰도 향상을 위하여 최신의 고속 하이비젼 카메라 기술과 최적화된 영상처리 알고리즘을 적용하여 차륜형상 측정시스템을 개발하였다. 신뢰성 평가 실험결과 개발된 차륜형상 측정시스템의 신뢰도는 기존 시스템에 비하여 약 10.4%의 신뢰도 향상 효과가 있음을 확인하였다.

Recognition of Car Manufacturers using Faster R-CNN and Perspective Transformation

  • Ansari, Israfil;Lee, Yeunghak;Jeong, Yunju;Shim, Jaechang
    • 한국멀티미디어학회논문지
    • /
    • 제21권8호
    • /
    • pp.888-896
    • /
    • 2018
  • In this paper, we report detection and recognition of vehicle logo from images captured from street CCTV. Image data includes both the front and rear view of the vehicles. The proposed method is a two-step process which combines image preprocessing and faster region-based convolutional neural network (R-CNN) for logo recognition. Without preprocessing, faster R-CNN accuracy is high only if the image quality is good. The proposed system is focusing on street CCTV camera where image quality is different from a front facing camera. Using perspective transformation the top view images are transformed into front view images. In this system, the detection and accuracy are much higher as compared to the existing algorithm. As a result of the experiment, on day data the detection and recognition rate is improved by 2% and night data, detection rate improved by 14%.

Fast, Accurate Vehicle Detection and Distance Estimation

  • Ma, QuanMeng;Jiang, Guang;Lai, DianZhi;cui, Hua;Song, Huansheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권2호
    • /
    • pp.610-630
    • /
    • 2020
  • A large number of people suffered from traffic accidents each year, so people pay more attention to traffic safety. However, the traditional methods use laser sensors to calculate the vehicle distance at a very high cost. In this paper, we propose a method based on deep learning to calculate the vehicle distance with a monocular camera. Our method is inexpensive and quite convenient to deploy on the mobile platforms. This paper makes two contributions. First, based on Light-Head RCNN, we propose a new vehicle detection framework called Light-Car Detection which can be used on the mobile platforms. Second, the planar homography of projective geometry is used to calculate the distance between the camera and the vehicles ahead. The results show that our detection system achieves 13FPS detection speed and 60.0% mAP on the Adreno 530 GPU of Samsung Galaxy S7, while only requires 7.1MB of storage space. Compared with the methods existed, the proposed method achieves a better performance.

A development of traffic information detection using camera

  • 김양주;한민홍
    • 한국경영과학회:학술대회논문집
    • /
    • 대한산업공학회/한국경영과학회 1995년도 춘계공동학술대회논문집; 전남대학교; 28-29 Apr. 1995
    • /
    • pp.316-323
    • /
    • 1995
  • This paper presents an image processing technique to get traffic information such as vehicle volume, velocity, and occupancy for measuring the traffic congestion rate. To obtain these information, two horizontal lines are previously set on the screen. A moving vehicle is detected using the gray level difference on each line, and also template matching method at night. Threshold values are determined by sampling pavement grey level, and updated dynamically to cope with the change of ambient light conditions. These technique is successfully used to calculate vehicle volume, occupancy, and velocity. This study can be applied to traffic signal control system for minimizing traffic congestion in urban areas.

  • PDF

깊이 카메라를 이용한 무인이동체의 장애물 회피 시스템 설계 (The Design of the Obstacle Avoidances System for Unmanned Vehicle Using a Depth Camera)

  • 김민준;장종욱
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2016년도 추계학술대회
    • /
    • pp.224-226
    • /
    • 2016
  • 기술의 발전과 민간수요 급증으로 '무인 자율화', '이동체' 특성이 결합된 무인이동체 신시장이 급성장하고 있다. 현재 일부 국가들이 시범주행을 허용하고 있으나, 자율주행차의 정식 운행을 제도화 한 나라는 없다. 기존 차량의 경우에도 후방감지기의 잦은 오작동이나, 후방카메라의 사각지대 또는 운전자의 부주의 때문에 안전사고가 자주 일어나고 있다. 이러한 사소한 결함들을 보완이 되어야 자율주행차, 소형드론의 상용화를 위한 관련 규제를 완화 할 수 있을 것이다. 본 논문에서는 기존의 이동체에서 사용되었던 초음파, 레이저 센서와는 다르게 깊이 카메라를 이용하여 거리측정을 시도해보려 한다. 깊이 카메라는 레이저나 적외선을 객체나 대상 영역에 비추어 되돌아오는 광선을 받아 시간 차이를 계산하는 TOF 방식으로 거리 정보를 계산한다. 이런 카메라는 CCD 카메라 영상 화소 단위로 깊이 정보를 얻을 수 있어 실시간 깊이 정보를 모으는 데 활용할 수 있다. 이런 실시간 깊이 정보들을 이용하여 앞서 말한 문제점을 해결하고, 거리측정을 통한 장애물 회피 시스템 설계를 제안한다.

  • PDF

New Vehicle Verification Scheme for Blind Spot Area Based on Imaging Sensor System

  • Hong, Gwang-Soo;Lee, Jong-Hyeok;Lee, Young-Woon;Kim, Byung-Gyu
    • Journal of Multimedia Information System
    • /
    • 제4권1호
    • /
    • pp.9-18
    • /
    • 2017
  • Ubiquitous computing is a novel paradigm that is rapidly gaining in the scenario of wireless communications and telecommunications for realizing smart world. As rapid development of sensor technology, smart sensor system becomes more popular in automobile or vehicle. In this study, a new vehicle detection mechanism in real-time for blind spot area is proposed based on imaging sensors. To determine the position of other vehicles on the road is important for operation of driver assistance systems (DASs) to increase driving safety. As the result, blind spot detection of vehicles is addressed using an automobile detection algorithm for blind spots. The proposed vehicle verification utilizes the height and angle of a rear-looking vehicle mounted camera. Candidate vehicle information is extracted using adaptive shadow detection based on brightness values of an image of a vehicle area. The vehicle is verified using a training set with Haar-like features of candidate vehicles. Using these processes, moving vehicles can be detected in blind spots. The detection ratio of true vehicles was 91.1% in blind spots based on various experimental results.

정밀 지도에 기반한 자율 주행 시스템 개발 (A Development of the Autonomous Driving System based on a Precise Digital Map)

  • 김병광;이철하;권수림;정창영;천창환;박민우;나용천
    • 자동차안전학회지
    • /
    • 제9권2호
    • /
    • pp.6-12
    • /
    • 2017
  • An autonomous driving system based on a precise digital map is developed. The system is implemented to the Hyundai's Tucsan fuel cell car, which has a camera, smart cruise control (SCC) and Blind spot detection (BSD) radars, 4-Layer LiDARs, and a standard GPS module. The precise digital map has various information such as lanes, speed bumps, crosswalks and land marks, etc. They can be distinguished as lane-level. The system fuses sensed data around the vehicle for localization and estimates the vehicle's location in the precise map. Objects around the vehicle are detected by the sensor fusion system. Collision threat assessment is performed by detecting dangerous vehicles on the precise map. When an obstacle is on the driving path, the system estimates time to collision and slow down the speed. The vehicle has driven autonomously in the Hyundai-Kia Namyang Research Center.