• 제목/요약/키워드: Vehicle System Engineering

검색결과 4,651건 처리시간 0.044초

Design of Advanced Tele-operated Control System for Unmanned Vehicle

  • Park, Jae-Hong;Son, Young-Jin;Kim, Jung-Ha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.915-919
    • /
    • 2005
  • It is materialized an unmanned vehicle system as a part of Intelligent Transportation System (ITS) which is a fundamental constituent for unmanned vehicle. Remote control system, monitoring system and remote operating system which are consisted of unmanned vehicle system. Network program by TCP/IP socket, and real-time control & operating controlled by servo-motors from a remote place, those are used to verify safety and stability of the unmanned vehicle system in this research. This unmanned vehicle is divided into two major sections which are an unmanned vehicle part and control station part. The server PC is installed on the unmanned vehicle and a client PC is installed at a remote place, which can control the u manned vehicle. In this research work, main theme is that we experimented and tested to check the speed and utilization of the wireless LAN communication.

  • PDF

The Control System Modeling and Experiment for the Tele-operated Unmanned Vehicle

  • Duk sun Yun;Lee, Woon-Sung;Kim, Jung-Ha
    • Journal of Mechanical Science and Technology
    • /
    • 제16권10호
    • /
    • pp.1253-1263
    • /
    • 2002
  • The control system design and modeling of an unmanned vehicle by means of a new concept for better performance through a tole-operation system is suggested by sensor fusion. But, the control of a real vehicle is very difficult, because the system identification of the vehicle is hard to find the unknown factors and the disturbances of the experimental environment. For the longitudinal and lateral controls, the traction system and steering system models are set up and a tuning method to find the gain of the controller by experiments is presented. In this research, mechanical and electronic parts are implemented to operate the unmanned vehicle and data reconstruction method of information about the environment data coming from several sensors is presented by data plot for the vehicle navigation. This paper focuses on the integration of tole-operated unmanned vehicle. This vehicle mainly controlled lateral and longitudinal directions with actuators for controlling vehicle movement and sensors for the closed-loop controlled system.

Practical Study about Obstacle Detecting and Collision Avoidance Algorithm for Unmanned Vehicle

  • Park, Eun-Young;Lee, Woon-Sung;Kim, Jung-Ha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.487-490
    • /
    • 2003
  • In this research, we will devise an obstacle avoidance algorithm for a previously unmanned vehicle. Whole systems consist mainly of the vehicle system and the control system. The two systems are separated; this system can communicate with the vehicle system and the control system through wireless RF (Radio Frequency) modules. These modules use wireless communication. And the vehicle system is operated on PIC Micro Controller. Obstacle avoidance method for unmanned vehicle is based on the Virtual Force Field (VFF) method. An obstacle exerts repulsive forces and the lane center point applies an attractive force to the unmanned vehicle. A resultant force vector, comprising of the sum of a target directed attractive force and repulsive forces from an obstacle, is calculated for a given unmanned vehicle position. With resultant force acting on the unmanned vehicle, the vehicle's new driving direction is calculated, the vehicle makes steering adjustments, and this algorithm is repeated.

  • PDF

The User Motion Pattern Control System for The Simulated Vehicle

  • Kim, Tae-Wan;Lee, Dong-Myung
    • 공학교육연구
    • /
    • 제15권4호
    • /
    • pp.48-52
    • /
    • 2012
  • The purpose of this paper is to design and implement the user motion pattern control system for the simulated vehicle. After analyzing the user motion patterns in the system, the patterns are used to control the moving direction of the simulated vehicle such as forward, backward, turn right, turn left etc. The patterns in the system around are sent to the simulated vehicle in real time. In order to execute the suggested user motion pattern control system, the Kinect is used for executing the system. The Kinect recognizes the specified user motion patterns and it transmits the data to the user motion pattern control system. There are nine kinds of the user motion patterns in the system for controlling the simulated vehicle. In addition to this, some sensors are used to detect the condition of the simulated vehicle. GPS is also used to estimate the current location of the simulated vehicle and to obtain the driving information.

Unmanned Vehicle System Configuration using All Terrain Vehicle

  • Moon, Hee-Chang;Park, Eun-Young;Kim, Jung-Ha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1550-1554
    • /
    • 2004
  • This paper deals with an unmanned vehicle system configuration using all terrain vehicle. Many research institutes and university study and develop unmanned vehicle system and control algorithm. Now a day, they try to apply unmanned vehicle to use military device and explore space and deep sea. These unmanned vehicles can help us to work is difficult task and approach. In the previous research of unmanned vehicle in our lab, we used 1/10 scale radio control vehicle and composed the unmanned vehicle system using ultrasonic sensors, CCD camera and kinds of sensor for vehicle's motion control. We designed lane detecting algorithm using vision system and obstacle detecting and avoidance algorithm using ultrasonic sensor and infrared ray sensor. As the system is increased, it is hard to compose the system on the 1/10 scale RC car. So we have to choose a new vehicle is bigger than 1/10 scale RC car but it is smaller than real size vehicle. ATV(all terrain vehicle) and real size vehicle have similar structure and its size is smaller. In this research, we make unmanned vehicle using ATV and explain control theory of each component

  • PDF

A Study of Vehicle Fuel Consumption Simulation using VHDL-AMS Multi-domain Simulation

  • Abe, Takashi;Takakura, Shikoh;Higuchi, Tsuyoshi
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제2권2호
    • /
    • pp.232-238
    • /
    • 2013
  • The vehicle system is a multi-domain system that requires many branches of science and engineering. Therefore the development of the vehicle system requires the use of design methodologies that utilize simulations, which have grown increasingly sophisticated in recent years. Our research group proposed a simulation modeling method based on the VHDL-AMS language. This paper describes how VHDL-AMS is used to model of vehicle fuel consumption simulation. The fuel consumption is shown using proposed simulation model on the Japanese 10-15 mode. We examine the influence of the vehicle system with electrical load and hill climb resistance in the vehicle running resistance.

CAN을 기본으로한 전기자동차용 차량 네트워크 교육용 시스템 개발 (Developing an In-vehicle Network Education System Based on CAN)

  • 이병수;박민규;성금길
    • 한국자동차공학회논문집
    • /
    • 제19권4호
    • /
    • pp.54-63
    • /
    • 2011
  • An educational network system based on CAN protocol internal to a passenger ground vehicle has been developed. The developed network system has been applied to a commercial plug-in electrical vehicle and verified the educational applicability. To apply this in-vehicle network technology based on CAN, a suitable electric vehicle has been chosen and a CAN network structure has been designed, developed and manufactured. Since the commercial electric vehicle chosen as a test bed has its own proprietary electric network, we explain how the original electric network has been utilized and how the new network system has been designed. The developed network system on a real vehicle has been tested to show the applicability and the performance. Finally, the system has been applied at few classrooms to demonstrate how the in-vehicle network system works and to teach how to analyse the CAN signals. The developed system proven to be effective for educational purpose.

Wind loads on a moving vehicle-bridge deck system by wind-tunnel model test

  • Li, Yongle;Hu, Peng;Xu, You-Lin;Zhang, Mingjin;Liao, Haili
    • Wind and Structures
    • /
    • 제19권2호
    • /
    • pp.145-167
    • /
    • 2014
  • Wind-vehicle-bridge (WVB) interaction can be regarded as a coupled vibration system. Aerodynamic forces and moment on vehicles and bridge decks play an important role in the vibration analysis of the coupled WVB system. High-speed vehicle motion has certain effects on the aerodynamic characteristics of a vehicle-bridge system under crosswinds, but it is not taken into account in most previous studies. In this study, a new testing system with a moving vehicle model was developed to directly measure the aerodynamic forces and moment on the vehicle and bridge deck when the vehicle model moved on the bridge deck under crosswinds in a large wind tunnel. The testing system, with a total length of 18.0 m, consisted of three main parts: vehicle-bridge model system, motion system and signal measuring system. The wind speed, vehicle speed, test objects and relative position of the vehicle to the bridge deck could be easily altered for different test cases. The aerodynamic forces and moment on the moving vehicle and bridge deck were measured utilizing the new testing system. The effects of the vehicle speed, wind yaw angle, rail track position and vehicle type on the aerodynamic characteristics of the vehicle and bridge deck were investigated. In addition, a data processing method was proposed according to the characteristics of the dynamic testing signals to determine the variations of aerodynamic forces and moment on the moving vehicle and bridge deck. Three-car and single-car models were employed as the moving rail vehicle model and road vehicle model, respectively. The results indicate that the drag and lift coefficients of the vehicle tend to increase with the increase of the vehicle speed and the decrease of the resultant wind yaw angle and that the vehicle speed has more significant effect on the aerodynamic coefficients of the single-car model than on those of the three-car model. This study also reveals that the aerodynamic coefficients of the vehicle and bridge deck are strongly influenced by the rail track positions, while the aerodynamic coefficients of the bridge deck are insensitive to the vehicle speed or resultant wind yaw angle.

운전자 인지반응 연구를 위한 VR 시뮬레이션 시스템 개발 (Development of the VR Simulation System for the Study of Driver's Perceptive Response)

  • 장석;권성진;전지훈;조기용;서명원
    • 한국자동차공학회논문집
    • /
    • 제13권2호
    • /
    • pp.149-156
    • /
    • 2005
  • In this paper, the VR(Virtual Reality) simulation system is developed to analyze driver's perceptive response on the ASV(Advanced Safety Vehicle). The ASV is the vehicle of next generation equipped with various warning systems. For the purpose, the VR simulation system consists of VR database, vehicle dynamic model, graphic/sound system, and driving system. The VR database which generates 3D graphic and sound information is organized for the driving reality. Mathematical models of vehicle dynamic analysis are constructed to represent the dynamic behavior of a vehicle. The driving system and the graphic/sound system provide a driver with the operation of a vehicle and the feedback of a driving situation. Also, the real-time simulation algorithm synchronizes the vehicle dynamic model with the VR database. To check the validity of the developed system, a simple scenario is applied to investigate driver's perceptive response time and vehicle acceleration on an emergency situation. It is confirmed that the proposed system is useful and helpful to design the FVCWS(Forward Vehicle Collision Warning System).

A Study on the Hydraulic Pump/Motor Control in the Flywheel Hybrid Vehicle

  • Oh, Boem-Sueng;Ahn, Kyoung-Kwan;Cho, Yong-Rae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.307-311
    • /
    • 2004
  • In this study, a novel hybrid vehicle is proposed. The vehicle has a flywheel-engine hybrid system. Flywheels are more effective as energy charge systems than electric batteries in a respect of output power density. However, transmissions to effectively drive flywheels are very complex systems such as CVTs (Continuously Variable Transmissions). In the proposed hybrid vehicle, Constant Pressure System is employed, which is hydraulic power transmission. Using Constant Pressure Systems, hydraulic CVTs are easily realized with variable displacement pumps/motors. In this paper, firstly, the proposed flywheel hybrid vehicle making use of Constant Pressure System is described. Secondly, fuel consumption characteristics of the flywheel hybrid vehicle are experimentally examined with the stationary test facility, which employs a flywheel as a load emulating vehicle inertia. Finally, the experimental results and discussions are described. Fuel consumption of 26km/L is expected for 10 mode driving schedule with vehicle mass of 1500kg.

  • PDF