• Title/Summary/Keyword: Vehicle Structures

Search Result 681, Processing Time 0.046 seconds

Analytical Method for Aperiodic EBG Island in Power Distribution Network of High-Speed Packages and PCBs (비주기 전자기 밴드갭이 국소 배치된 고속 패키지/PCB 전원분배망 해석 방안)

  • Myunghoi Kim
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.1
    • /
    • pp.129-135
    • /
    • 2024
  • In this paper, an analytical approach for the design and analysis of an aperiodic electromagnetic bandgap (EBG)-based power distribution network (PDN) in high-speed integrated-circuit (IC) packages and printed circuit boards (PCBs) is proposed. Aperiodic EBG is an effective method to solve the noise problem of high-speed IC packages and PCBs. However, its analysis becomes challenging due to increased computation time. To overcome the problem, the proposed analytical method entails deriving impedance parameters for EBG island and the overall PDN, which includes locally placed EBG structures. To validate the proposed method, a test vehicle is fabricated, demonstrating good agreement with the measurements. Significantly, the proposed analytical method reduces computation time by 99.7 %compared to the full-wave simulation method.

Development of a Dynamic Offtracking Model on Horizontal Curve Sections (Based on Articulated Vehicles) (도로 평면곡선부에서 동적궤도이탈모형 개발에 관한 연구 (굴절차량을 중심으로))

  • 최재성;김우현
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.3
    • /
    • pp.115-128
    • /
    • 2002
  • Dislike the tangent sections, the horizontal curve sections of roads should be designed, considering several factors : one of such factors is widening. In other words, since widening results from that when a vehicle runs on the horizontal curve sections, the rear wheels of the vehicle run not along with tracks of the front wheels but out of that, such offtracking should be exactly investigated and reflected in design of the curve sections. Especially in the case of industrial roads which semi-trailers and large trucks run frequently or arterial roads with small curve radiuses in mountainous regions. serious offtracking Phenomenons result in increasing the risk of accidents. decreasing the capacities and jeopardizing pedestrians' safety on the curve sections. For the offtracking, widening amounts of roads has been determined under the traditional presumption that vehicles run at a low speed and there is no superelevation. In fact, however, since the vehicles run at a high speed as well as at a low speed and the superelevation is installed on the horizontal curve sections in the structural aspect of roads, the existing standards for installing widening have a limitation to reflect exactly actual Phenomenons. In particular, for articulated wheel axles of a tractor and a trailer and long articulated vehicles, not only the offtracking degree is very high but also the interpretation shows different aspects from one of single axles. Comparing and reviewing the results of Korean and foreign studies related to the trailer offtracking model theory and the standards for installing widening, this study developed a realistic dynamic offtracking model which considers geometric structures of roads and speeds of vehicles, suggested how to measure widening with this model and examined applicability of the model. The findings of this study are as follows ; First. a dynamic offtracking model. which considers dynamic movements of a tractor and a trailer and the superelevation, was developed. Second, a new method to measure widening with the developed dynamic offtracking model was developed and a method to measure widening with swept path width was suggested as well. Finally, validity of the current standards for installing widening was examined by determining actual offtracking and widening amounts with the developed model and the applicability was investigated through the case studies. Compared with the existing offtracking models, the dynamic offtracking model developed in this study can reflect practically vehicle speed. dimension and geometric structural aspects of roads. In conclusion, the meaning of this study is that it reviews validity of the current standards for installing widening and provides a base to establish such standards by suggesting new methods to measure the widening with this dynamic offtracking model.

Object-based Building Change Detection Using Azimuth and Elevation Angles of Sun and Platform in the Multi-sensor Images (태양과 플랫폼의 방위각 및 고도각을 이용한 이종 센서 영상에서의 객체기반 건물 변화탐지)

  • Jung, Sejung;Park, Jueon;Lee, Won Hee;Han, Youkyung
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_2
    • /
    • pp.989-1006
    • /
    • 2020
  • Building change monitoring based on building detection is one of the most important fields in terms of monitoring artificial structures using high-resolution multi-temporal images such as CAS500-1 and 2, which are scheduled to be launched. However, not only the various shapes and sizes of buildings located on the surface of the Earth, but also the shadows or trees around them make it difficult to detect the buildings accurately. Also, a large number of misdetection are caused by relief displacement according to the azimuth and elevation angles of the platform. In this study, object-based building detection was performed using the azimuth angle of the Sun and the corresponding main direction of shadows to improve the results of building change detection. After that, the platform's azimuth and elevation angles were used to detect changed buildings. The object-based segmentation was performed on a high-resolution imagery, and then shadow objects were classified through the shadow intensity, and feature information such as rectangular fit, Gray-Level Co-occurrence Matrix (GLCM) homogeneity and area of each object were calculated for building candidate detection. Then, the final buildings were detected using the direction and distance relationship between the center of building candidate object and its shadow according to the azimuth angle of the Sun. A total of three methods were proposed for the building change detection between building objects detected in each image: simple overlay between objects, comparison of the object sizes according to the elevation angle of the platform, and consideration of direction between objects according to the azimuth angle of the platform. In this study, residential area was selected as study area using high-resolution imagery acquired from KOMPSAT-3 and Unmanned Aerial Vehicle (UAV). Experimental results have shown that F1-scores of building detection results detected using feature information were 0.488 and 0.696 respectively in KOMPSAT-3 image and UAV image, whereas F1-scores of building detection results considering shadows were 0.876 and 0.867, respectively, indicating that the accuracy of building detection method considering shadows is higher. Also among the three proposed building change detection methods, the F1-score of the consideration of direction between objects according to the azimuth angles was the highest at 0.891.

An Evaluation for Structural Performance of Suspension Bridge by using the Natural Frequency of Hanger Member (행거의 고유진동수를 이용한 현수교의 구조적 성능 평가)

  • Wu, Sang Ik;Kim, Kyoung Nam;Lee, Seong Haeng;Jung, Kyoung Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.2 s.69
    • /
    • pp.285-293
    • /
    • 2004
  • As a special infrastructure, it is important that the suspension bridges which were designed by using the cable are carefully maintained and safely inspected after their construction, more than what is done in other cases of bridge structures. However, the structural analysis for their design and maintenance has considered only the simplified geometric shape of the structure. Particularly, it is not easy to make the modeling analyze the bridge structure including detailed steel deck plates. In this paper, we evaluated the structural behaviors and performances of the completed earth-anchored suspension bridge that was in a completed state through both the tension of hanger member and their computational analysis. We considered the frame system and the detailed steel deck plates that were especially added into the modeling to take more precision analysis about it. We also applied hanger tensions converted by the natural frequency and the natural frequency of the bridge when in normal vibration. Results of the vehicle loading test were used in the analysis. We compared the results by using our modeling with the result of the loading test and the hanger tension. Our prediction on the behavior of the structure emulates the behavior of the real structure. In applying the data measured by the typhoon "Maemi" which arrived in-land last year, we confirmed our analysis model for the possibility of applying effectively into the preliminary design and maintenance plan.

Comparison of Vehicle Carbon Emissions in Expressway and National Highway (고속도로와 국도에서 차량 당 탄소가스 배출량 비교 - 경부 고속도로와 1번국도의 비교를 중심으로 -)

  • Lee, Yoon-Seok;Oh, Heung-Un
    • International Journal of Highway Engineering
    • /
    • v.13 no.3
    • /
    • pp.177-184
    • /
    • 2011
  • There are several differences between freeways and general national roads in terms of structures, conditions and limited speeds. Likewise, the characteristics of $CO_2$ emission in these roads differ depending on the road types. For these reasons, it is necessary to compare the two types of roads in terms of $CO_2$ emissions. The study was performed targeting Gyeongbu Expressway and National Highway 1. Firstly, the amount of $CO_2$ emission each car was compared in the whole sections of the both. Secondly, top 10 sections were picked out, and then $CO_2$ emission each section were compared. Lastly, two sections which were with the highest and lowest amount of $CO_2$ emission per car, were compared. As results, it were found that there were less amount of $CO_2$ emission on freeways. because cars are running on uniform velocity at relatively high speed, and that there were more amount of $CO_2$ emission on the national highway. because of frequent intersections and associated congestion. It may be concluded that the amount of $CO_2$ emission at the national highway could be reduced if signal coordination and intersection intervals are improved there.

Numerical Analysis and Verification of Sound Absorbing Properties of Perforated Plate (타공판의 등가 흡음 물성치 유도와 공명기로서의 흡음성능 해석)

  • Yoon, Gil-Ho;Kim, Ki-Hyun;Choi, Jung-Sik;Yun, Su-Hwan
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.2
    • /
    • pp.139-144
    • /
    • 2015
  • Recently, to realize sound-absorbing structures, we have to insert sound-absorbing materials into wall. These shapes are taken limitations because sound-absorbing materials should be fixed. Therefore, the sound absorption is changed by environment that used the sound-absorbing materials. On the other hand, we will take same effect without sound-absorbing material, if we change the shape of wall to sound absorbing structure. If we use this sound absorbing structure, we can get benefits by removing limitation of materials. Therefore we suggest perforated plate for effective sound-absorbing structure. We confirmed the function of sound-absorption of this structure using equivalent property. Then, we found the similarity between perforated plate and resonator. Also, we verify these theories through computer simulation by FEM(Finite Element Method). Finally, we validated that perforated plate has function of sound absorption without sound-absorbing material. This perforated plate is used for sound-absorbing material of buildings and transportations such as vehicle, train etc. Also, these results could be further used basic tool for design of sound-absorption structure.

Normalized Digital Surface Model Extraction and Slope Parameter Determination through Region Growing of UAV Data (무인항공기 데이터의 영역 확장법 적용을 통한 정규수치표면모델 추출 및 경사도 파라미터 설정)

  • Yeom, Junho;Lee, Wonhee;Kim, Taeheon;Han, Youkyung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.6
    • /
    • pp.499-506
    • /
    • 2019
  • NDSM (Normalized Digital Surface Model) is key information for the detailed analysis of remote sensing data. Although NDSM can be simply obtained by subtracting a DTM (Digital Terrain Model) from a DSM (Digital Surface Model), in case of UAV (Unmanned Aerial Vehicle) data, it is difficult to get an accurate DTM due to high resolution characteristics of UAV data containing a large number of complex objects on the ground such as vegetation and urban structures. In this study, RGB-based UAV vegetation index, ExG (Excess Green) was used to extract initial seed points having low ExG values for region growing such that a DTM can be generated cost-effectively based on high resolution UAV data. For this process, local window analysis was applied to resolve the problem of erroneous seed point extraction from local low ExG points. Using the DSM values of seed points, region growing was applied to merge neighboring terrain pixels. Slope criteria were adopted for the region growing process and the seed points were determined as terrain points in case the size of segments is larger than 0.25 ㎡. Various slope criteria were tested to derive the optimized value for UAV data-based NDSM generation. Finally, the extracted terrain points were evaluated and interpolation was performed using the terrain points to generate an NDSM. The proposed method was applied to agricultural area in order to extract the above ground heights of crops and check feasibility of agricultural monitoring.

An Analysis of the Vehicular Delay Caused by Scrambled Crosswalk Installation in a Roundabout (회전교차로에서 대각선횡단보도 설치에 따른 차량의 지체도 분석)

  • Kang, Sung In;Lee, Young Woo
    • Journal of Korean Society of Transportation
    • /
    • v.32 no.3
    • /
    • pp.218-226
    • /
    • 2014
  • This study examines a way to install a crosswalk that can improve pedestrians' convenience and safety and that goes beyond the crosswalk design standard of existing roundabouts. When a scrambled crosswalk, one of the crosswalk installation methods, is introduced to the roundabout system, it shortens the cross-walking distance of pedestrians and thus enhances convenience. Although the installation of a scrambled crosswalk may enhance pedestrians' convenience, it may obstruct vehicular traffic. Thus, this study presents standards for reasonable diagonal crosswalk installation based on the investigation on its effects on a vehicle's delay time. This study includes an analysis of the various geometric structures of roundabouts. The study results show that as v/c and the number of pedestrians increased, the delay time after the installation of a scrambled crosswalk increased although the extent was different. In general, the effect of the installation of a scrambled crosswalk was insignificant regardless of the number of pedestrians when v/c was under 0.6. When the number of pedestrians was 300/hour or lower, the difference in the delay time was quite insignificant regardless of v/c. In addition, as the inscribed circle of the roundabout was larger, the difference in the delay time decreased depending on v/c and the number of pedestrians.

Clinical Evaluation of Traumatic Sternal Fracture (외상성 흉골 골절의 임상적 평가)

  • Lee, Sung-Joo;Koo, Won-Mo;Moon, Seong-Cheol;Kim, Dae-Sig;Lee, Gun;Lim, Chang-Young;Kim, Chang-Hoe;Chae, Sung-Soo
    • Journal of Chest Surgery
    • /
    • v.31 no.3
    • /
    • pp.291-297
    • /
    • 1998
  • Sternal fractures, once thought of as an uncommon phenomenon, have occurred with an increasing frequency, paralleling the incidence of motor vehicle accidents. The tremendous force necessary to cause sternal fracture and this bone's prominent position overlying major intrathoracic and mediastinal structures, have important implications in the assessment and treatment of patients. This evaluation is based on the review of 72 patients of traumatic sternal fracture treated at the Department of Thoracic and Cardiovascular Surgery, Seoul Adventist Hospital during the last 4 years from March 1993 to February 1997. The frequency was 12.2% of nonpenetrating chest trauma and average age was 43.2 years old. Automobile accidents(84%) and sternal body fractures(95.8%) with anterior displacements(19.4%) was the most common cause and fracture site. Increase of cardiac isoenzymes was more frequent and higher in sternal fracture than chest contusion but there was no relationship between the time to take normalization of them and the mode of trauma.

  • PDF

Study on the Optimal Construction Method for the Compaction Method of Hydraulic Filling in Metropolitan Areas (도심지 물다짐 공법의 적정 시공방법에 관한 연구)

  • Jeong, Dal-Yeong;Jang, Jong-Hwan;Chung, Jin-Hyuck
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.2
    • /
    • pp.175-181
    • /
    • 2020
  • This paper suggests a proper hydraulic filling method in downtown areas. Road subsidence on roadways and sidewalks in downtown areas can result in vehicle damage and casualties. The representative cause of road subsidence is the fraudulent construction in nearby construction sites. A deficiency of excavation restoration causes approximately 25~49% of subsidence. This is performed by equipment or manpower. Hydraulic filling is used in backfilling narrow pipe conduits and spaces between structures. On the other hand, standard specifications and quality assurance standards regarding hydraulic filling principles and construction conditions are insufficient. Therefore, in-door model experiments on hydraulic filling principles, backfilling material, and compaction efficiency were performed. This paper suggests guidelines by investigating and analyzing construction status. In conclusion, thrown backfilling material has a particle size distribution and permeability coefficient as major factors, and detailed standards of the factors are suggested. To improve the compaction efficiency, 90% or more, compaction by the floor should be in units of 0.3m while ensuring a lower drainage layer. When an H-shape stabilizing pile is pulled out after filling, additional hydraulic filling should be in the disturbance range.