• 제목/요약/키워드: Vehicle Routing Problems

검색결과 108건 처리시간 0.027초

A Hierarchical Hybrid Meta-Heuristic Approach to Coping with Large Practical Multi-Depot VRP

  • Shimizu, Yoshiaki;Sakaguchi, Tatsuhiko
    • Industrial Engineering and Management Systems
    • /
    • 제13권2호
    • /
    • pp.163-171
    • /
    • 2014
  • Under amazing increase in markets and certain demand on qualified service in the delivery system, global logistic optimization is becoming a keen interest to provide an essential infrastructure coping with modern competitive prospects. As a key technology for such deployment, we have been engaged in the practical studies on vehicle routing problem (VRP) in terms of Weber model, and developed a hybrid approach of meta-heuristic methods and the graph algorithm of minimum cost flow problem. This paper extends such idea to multi-depot VRP so that we can give a more general framework available for various real world applications including those in green or low carbon logistics. We show the developed procedure can handle various types of problem, i.e., delivery, direct pickup, and drop by pickup problems in a common framework. Numerical experiments have been carried out to validate the effectiveness of the proposed method. Moreover, to enhance usability of the method, Google Maps API is applied to retrieve real distance data and visualize the numerical result on the map.

Study on Delivery of Military Drones and Transport UGVs with Time Constraints Using Hybrid Genetic Algorithms (하이브리드 유전 알고리즘을 이용한 시간제약이 있는 군수 드론 및 수송 UGV 혼합배송 문제 연구)

  • Lee, Jeonghun;Kim, Suhwan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • 제25권4호
    • /
    • pp.425-433
    • /
    • 2022
  • This paper studies the method of delivering munitions using both drones and UGVs that are developing along with the 4th Industrial Revolution. While drones are more mobile than UGVs, their loading capacity is small, and UGVs have relatively less mobility than drones, but their loading capacity is better. Therefore, by simultaneously operating these two delivery means, each other's shortcomings may be compensated. In addition, on actual battlefields, time constraints are an important factor in delivering munitions. Therefore, assuming an actual battlefield environment with a time limit, we establish delivery routes that minimize delivery time by operating both drones and UGVs with different capacities and speeds. If the delivery is not completed within the time limit, penalties are imposed. We devised the hybrid genetic algorithm to find solutions to the proposed model, and as results of the experiment, we showed the algorithm we presented solved the actual size problems in a short time.

Scheduling of Parallel Offset Printing Process for Packaging Printing (패키징 인쇄를 위한 병렬 오프셋 인쇄 공정의 스케줄링)

  • Jaekyeong, Moon;Hyunchul, Tae
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • 제28권3호
    • /
    • pp.183-192
    • /
    • 2022
  • With the growth of the packaging industry, demand on the packaging printing comes in various forms. Customers' orders are diversifying and the standards for quality are increasing. Offset printing is mainly used in the packaging printing since it is easy to print in large quantities. However, productivity of the offset printing decreases when printing various order. This is because it takes time to change colors for each printing unit. Therefore, scheduling that minimizes the color replacement time and shortens the overall makespan is required. By the existing manual method based on workers' experience or intuition, scheduling results may vary for workers and this uncertainty increase the production cost. In this study, we propose an automated scheduling method of parallel offset printing process for packaging printing. We decompose the original problem into assigning and sequencing orders, and ink arrangement for printing problems. Vehicle routing problem and assignment problem are applied to each part. Mixed integer programming is used to model the problem mathematically. But it needs a lot of computational time to solve as the size of the problem grows. So guided local search algorithm is used to solve the problem. Through actual data experiments, we reviewed our method's applicability and role in the field.

Two-phases Hybrid Approaches and Partitioning Strategy to Solve Dynamic Commercial Fleet Management Problem Using Real-time Information (실시간 정보기반 동적 화물차량 운용문제의 2단계 하이브리드 해법과 Partitioning Strategy)

  • Kim, Yong-Jin
    • Journal of Korean Society of Transportation
    • /
    • 제22권2호
    • /
    • pp.145-154
    • /
    • 2004
  • The growing demand for customer-responsive, made-to-order manufacturing is stimulating the need for improved dynamic decision-making processes in commercial fleet operations. Moreover, the rapid growth of electronic commerce through the internet is also requiring advanced and precise real-time operation of vehicle fleets. Accompanying these demand side developments/pressures, the growing availability of technologies such as AVL(Automatic Vehicle Location) systems and continuous two-way communication devices is driving developments on the supply side. These technologies enable the dispatcher to identify the current location of trucks and to communicate with drivers in real time affording the carrier fleet dispatcher the opportunity to dynamically respond to changes in demand, driver and vehicle availability, as well as traffic network conditions. This research investigates key aspects of real time dynamic routing and scheduling problems in fleet operation particularly in a truckload pickup-and-delivery problem under various settings, in which information of stochastic demands is revealed on a continuous basis, i.e., as the scheduled routes are executed. The most promising solution strategies for dealing with this real-time problem are analyzed and integrated. Furthermore, this research develops. analyzes, and implements hybrid algorithms for solving them, which combine fast local heuristic approach with an optimization-based approach. In addition, various partitioning algorithms being able to deal with large fleet of vehicles are developed based on 'divided & conquer' technique. Simulation experiments are developed and conducted to evaluate the performance of these algorithms.

Design of military supply chain network using MIP & Simulation model (혼합정수계획법과 시뮬레이션 기법을 이용한 군 공급사슬망 설계)

  • Lee, Byeong-Ho;Jeong, Dong-Hwa;Seo, Yoon-Ho
    • Journal of the military operations research society of Korea
    • /
    • 제34권3호
    • /
    • pp.1-12
    • /
    • 2008
  • Design of supply chain network (SCN) is required to optimize every factor in SCN and to provide a long-term and strategic decision-making. A mathematical model can not reflect the real world because design of SCN contains variables and stochastic factors according to status of its system. This paper presents the designing methodology of military SCN using the mathematical model and the simulation model. It constructs SCN to minimize its total costs using the Mixed Integer Programming (MIP) model. And we solve problems of a vehicle assignment and routing through adaptation of experiment parameters repeatedly in the simulation model based on the results from the MIP model. We implement each model with CPLEX and AutoMod, and experiment to reconstruct SCN when the Logistic Support Unit is restricted to support military units. The results from these experiments show that the proposed method can be used for a design of military SCN.

Task Assignment of Multiple UAVs using MILP and GA (혼합정수 선형계획법과 유전 알고리듬을 이용한 다수 무인항공기 임무할당)

  • Choi, Hyun-Jin;Seo, Joong-Bo;Kim, You-Dan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • 제38권5호
    • /
    • pp.427-436
    • /
    • 2010
  • This paper deals with a task assignment problem of multiple UAVs performing multiple tasks on multiple targets. The task assignment problem of multiple UAVs is a kind of combinatorial optimization problems such as traveling salesman problem or vehicle routing problem, and it has NP-hard computational complexity. Therefore, computation time increases as the size of considered problem increases. To solve the problem efficiently, approximation methods or heuristic methods are widely used. In this study, the problem is formulated as a mixed integer linear program, and is solved by a mixed integer linear programming and a genetic algorithm, respectively. Numerical simulations for the environment of the multiple targets, multiple tasks, and obstacles were performed to analyze the optimality and efficiency of each method.

APPLYING ENTERPRISE GIS TO DISASTER MANAGEMENT AT KANGWON PROVINCE

  • Yoon, Hoon-Joo;Ryu, Joong-Hi;Kim, Jung-Dai;Park, Hong-Gi
    • Journal of Korean Society for Geospatial Information Science
    • /
    • 제9권2호
    • /
    • pp.29-36
    • /
    • 2001
  • The purpose of this paper is to describe the Disaster Management System Development of Enterprise GIS at the Kangwon Province in Korea. This project is included into 'the Kangwon Enterprise GIS 21 plan'. The Division of Disaster Management is in the middle of the 2-year project of the Disaster Management System development, appropriate for business performed at the Departments of Forestry, Culture, Environment, Tourism, etc. At the 1st phase of CIS implementation, for more than half a year we focused on the necessity of management of disasters. In the planning process, we needed long-term information on the whole area of Kangwon. In the assessment and response processes, we needed real-time data from Korean Meteorological Administration and other agencies. All the above information was carefully studied and referred to. ESRI's new GIS technologies solve the natural hazard/disaster problems. For example, hazardous materials routing often needs to be found the least expensive path through a roadway network. In the circumstances given, we can choose the departure point and destination of the vehicle, which carries the materials. It's also possible to minimize overall risk and costs of disaster problems by making a plan of people and possessions evacuation from the disaster area in short time limits. We can meet all the above goals using the latest ESRI's technologies.

  • PDF

Development of Intelligent ATP System Using Genetic Algorithm (유전 알고리듬을 적용한 지능형 ATP 시스템 개발)

  • Kim, Tai-Young
    • Journal of Intelligence and Information Systems
    • /
    • 제16권4호
    • /
    • pp.131-145
    • /
    • 2010
  • The framework for making a coordinated decision for large-scale facilities has become an important issue in supply chain(SC) management research. The competitive business environment requires companies to continuously search for the ways to achieve high efficiency and lower operational costs. In the areas of production/distribution planning, many researchers and practitioners have developedand evaluated the deterministic models to coordinate important and interrelated logistic decisions such as capacity management, inventory allocation, and vehicle routing. They initially have investigated the various process of SC separately and later become more interested in such problems encompassing the whole SC system. The accurate quotation of ATP(Available-To-Promise) plays a very important role in enhancing customer satisfaction and fill rate maximization. The complexity for intelligent manufacturing system, which includes all the linkages among procurement, production, and distribution, makes the accurate quotation of ATP be a quite difficult job. In addition to, many researchers assumed ATP model with integer time. However, in industry practices, integer times are very rare and the model developed using integer times is therefore approximating the real system. Various alternative models for an ATP system with time lags have been developed and evaluated. In most cases, these models have assumed that the time lags are integer multiples of a unit time grid. However, integer time lags are very rare in practices, and therefore models developed using integer time lags only approximate real systems. The differences occurring by this approximation frequently result in significant accuracy degradations. To introduce the ATP model with time lags, we first introduce the dynamic production function. Hackman and Leachman's dynamic production function in initiated research directly related to the topic of this paper. They propose a modeling framework for a system with non-integer time lags and show how to apply the framework to a variety of systems including continues time series, manufacturing resource planning and critical path method. Their formulation requires no additional variables or constraints and is capable of representing real world systems more accurately. Previously, to cope with non-integer time lags, they usually model a concerned system either by rounding lags to the nearest integers or by subdividing the time grid to make the lags become integer multiples of the grid. But each approach has a critical weakness: the first approach underestimates, potentially leading to infeasibilities or overestimates lead times, potentially resulting in excessive work-inprocesses. The second approach drastically inflates the problem size. We consider an optimized ATP system with non-integer time lag in supply chain management. We focus on a worldwide headquarter, distribution centers, and manufacturing facilities are globally networked. We develop a mixed integer programming(MIP) model for ATP process, which has the definition of required data flow. The illustrative ATP module shows the proposed system is largely affected inSCM. The system we are concerned is composed of a multiple production facility with multiple products, multiple distribution centers and multiple customers. For the system, we consider an ATP scheduling and capacity allocationproblem. In this study, we proposed the model for the ATP system in SCM using the dynamic production function considering the non-integer time lags. The model is developed under the framework suitable for the non-integer lags and, therefore, is more accurate than the models we usually encounter. We developed intelligent ATP System for this model using genetic algorithm. We focus on a capacitated production planning and capacity allocation problem, develop a mixed integer programming model, and propose an efficient heuristic procedure using an evolutionary system to solve it efficiently. This method makes it possible for the population to reach the approximate solution easily. Moreover, we designed and utilized a representation scheme that allows the proposed models to represent real variables. The proposed regeneration procedures, which evaluate each infeasible chromosome, makes the solutions converge to the optimum quickly.