• Title/Summary/Keyword: Vehicle Radar

Search Result 244, Processing Time 0.034 seconds

Design and Implementation of FMCW Radar Based on two-chip for Autonomous Driving Sensor (자율주행센서로서 개발한 2-chip 기반의 FMCW MIMO 레이다 설계 및 구현)

  • Choi, Junhyeok;Park, Shinmyong;Lee, Changhyun;Baek, Seungyeol;Lee, Milim
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.6
    • /
    • pp.43-49
    • /
    • 2022
  • FMCW(Frequency Modulated Continuous Wave) Radar is very useful for vehicle collision warning system and autonomous driving sensor. In this paper, the design and implementation of FMCW radar based on two chip MMIC developed as an autonomous driving sensor was described. Especially, generation of frame-based and chirp-based waveform generation and signal processing are mixed to have the strength of maximum detection speed and compensation of speed. This implemented system was analyzed for performance and commercialization potential through lab. test and driving test in K-city.

HUMAN-CENTERED DESIGN OF A STOP-AND-GO VEHICLE CRUISE CONTROL

  • Gu, J.S.;Yi, S.;Yi, K.
    • International Journal of Automotive Technology
    • /
    • v.7 no.5
    • /
    • pp.619-624
    • /
    • 2006
  • This paper presents design of a vehicle stop-and-go cruise control strategy based on analyzed results of the manual driving data. Human drivers driving characteristics have been investigated using vehicle driving data obtained from 100 participants on low speed urban traffic ways. The control algorithm has been designed to incorporate the driving characteristics of the human drivers and to achieve natural vehicle behavior of the controlled vehicle that would feel comfortable to the human driver under low speed stop-and-go driving conditions. Vehicle following characteristics of the cruise controlled vehicle have been investigated using a validated vehicle simulator and real driving radar sensor data.

RCS Analysis for Improving the Performance of the Skin Tracking of KSLV-II (한국형 발사체의 스킨 추적 성능 향상을 위한 RCS 분석)

  • Lee, Hyun-Seung;Lee, Eun-Gyu;Lim, Jeong-Taek;Choi, Jee-Hwan;Kim, Chul-Young
    • Journal of IKEEE
    • /
    • v.19 no.4
    • /
    • pp.566-572
    • /
    • 2015
  • In this paper, we calculate monostatic RCS(Radar Cross Section) and bistatic RCS for improving the Performance of the skin tracking of KSLV-II and the results were compared. EM(Electromagnetic) simulator was used for numerical analysis. For the two paths(L, S), after the vehicle was launched, RCS was calculated for region from 280 to 400 seconds. In the case of using the bistatic radar system, when the vehicle was launched to the L path, tracking performance was better when we receive RCS in Jeju than in Goheung. When the vehicle was launched to the S path, tracking performance was better when we receive RCS in Goheung than in Jeju. In the case of using the monostatic radar system, when the vehicle was launched to the L path, tracking performance was better when we receive RCS in Goheung than in Jeju. When the vehicle was launched to the S path, tracking performance was better when we receive RCS in Jeju than in Goheung.

Asynchronous Sensor Fusion using Multi-rate Kalman Filter (다중주기 칼만 필터를 이용한 비동기 센서 융합)

  • Son, Young Seop;Kim, Wonhee;Lee, Seung-Hi;Chung, Chung Choo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.11
    • /
    • pp.1551-1558
    • /
    • 2014
  • We propose a multi-rate sensor fusion of vision and radar using Kalman filter to solve problems of asynchronized and multi-rate sampling periods in object vehicle tracking. A model based prediction of object vehicles is performed with a decentralized multi-rate Kalman filter for each sensor (vision and radar sensors.) To obtain the improvement in the performance of position prediction, different weighting is applied to each sensor's predicted object position from the multi-rate Kalman filter. The proposed method can provide estimated position of the object vehicles at every sampling time of ECU. The Mahalanobis distance is used to make correspondence among the measured and predicted objects. Through the experimental results, we validate that the post-processed fusion data give us improved tracking performance. The proposed method obtained two times improvement in the object tracking performance compared to single sensor method (camera or radar sensor) in the view point of roots mean square error.

Design of a Single-Balanced Diode Mixer of FMCW Radar for Vehicle Detection (차량 감지용 FMCW 레이더의 단일 평형 다이오드 주파수 혼합기 설계 및 제작)

  • 한석균
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.12
    • /
    • pp.1335-1340
    • /
    • 2003
  • In this paper, a single balanced diode Mixer for the homodyne FMCW radar to detect distance and velocity of a vehicle target is designed and implemented using a microstrip line and two schottky barrier beam lead diodes. This mixer is optimally designed to have less a conversion loss within the 100 MHz bandwidth with a little LO injection power and a higher LO isolation as soon as possible through the embedded electrical length of microsrtrip line placed between the coupler and diode matching, considering together LO matching condition. The measured results show 6 dB of conversion loss, 23 dB LO/RF isolation and 3 dBm of input 1l dB, respectively.

A Vehicle Adaptive Cruise Control Design in Consideration of Human Driving Characteristics (운전자 주행 특성을 고려한 차량 적응 순항 제어기 설계)

  • Gu, Ja-Sung;Yi, Kyong-Su
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.2
    • /
    • pp.32-38
    • /
    • 2006
  • A vehicle adaptive cruise control strategy based on human drivers' driving characteristics has been investigated. Human drivers driving characteristics have been analyzed using vehicle test data obtained from 125 participants. The control algorithm has been designed to incorporate the driving characteristics of the human drivers and to achieve natural vehicle behavior of the controlled vehicle that would reduce the workload of the human driver. Vehicle following characteristics of the cruise controlled vehicle have been compared to real-world driving radar sensor data of human drivers using a validated vehicle simulator. and compare nominal cruise control and adaptive cruise control.

Pulse Radar Signal Processing Algorithm for Vehicle Detection (차량검지 시스템을 위한 펄스레이더 신호처리 알고리즘)

  • 고기원;우광준
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.41 no.5
    • /
    • pp.9-18
    • /
    • 2004
  • This paper presents a vehicle detecting algorithm using microwave system signals. The Proposed algerian decides the breakpoint of signals using the likelihood criteria. The decided signals are segmented and simplified. The proposed searching algorithm uses the Euclid distance from the weighted signal data. We tested the proposed algorithm to compare with the segmentation which is a method using smoothing and edge detection. We confirm that the proposed algorithm is very useful for detecting vehicles by field test.

In-Flight Alignment Algorithm Using Uplinked Radar Data Including Time Delay

  • Park, Chan-Ju;Kim, Heun-Beik;Song, Gi-Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.56.1-56
    • /
    • 2001
  • Initial attitude error is one of the large error sources in the navigation errors of SDINS. And it is important to decide the initial attitude of SDINS. The method, like a self-alignment or a transfer alignment method, is required to a precise INS. If we do not have a precise INS, we should get large attitude error. After performing the initial alignment, a vehicle has the initial attitude error. Therefore, it results in navigation error due to the initial attitude error. But, if we use position information during flight, we could estimate and compensate a vehicle attitude error. So, we can maintain a precise attitude in spite of existing the initial attitude error. Using the uplinked position information from a land-based radar system, the new algorithm estimates the attitude of the SDINS during flight ...

  • PDF

Case Studies of Safety Diagnosis by GPR (GPR에 의한 안전진단 사례)

  • 한자경;최광철
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.12a
    • /
    • pp.169-180
    • /
    • 1999
  • Ground penetrating radar(GPR) uses radio waves to detect buried objects in any non-metallic material. Initially it was used to detect structures in ice. GPR has evolved to include the penetration of soils, rocks and man-made structures. GPR uses a sensitive detector to record weak radio waves reflected from objects embedded in the material under investigation. In this study, the GPR is applied to outside plant telecommunication facilities such as cable tunnels, manholes and underground conduits and model experiments to obtain radar characteristics. The thickness and soundness of tunnel lining can be evaluated, and the location of rebars and steel ribs can also be found effectively. The location of underground conduits as well as manholes can be found and the results of GPR give good coincidence with design drawings. In order to investigate the tunnel lining, the GPR mounted vehicle is developed and it is proved that the vehicle can save time and manpower.

  • PDF

An Experimental Study on Coordinates Tracker Realization for EOTS Slaved to the Radar of a Helicopter (전자광학추적장비의 좌표추적기 구현 및 헬리콥터 탑재 레이더 연동시험에 관한 연구)

  • Jung Seul;Park Ju-Kwang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.4
    • /
    • pp.369-377
    • /
    • 2005
  • This paper describes the realization of a coordinates tracking algorithm for an EOTS (Electro-Optical Tracking System). The EOTS stabilizes the image sensors, tracks targets automatically, and provides navigation capability for vehicles. The coordinates tracking algorithm calculates the azimuth and the elevation angle of an EOTS using the inertial navigation system and the attitude sensors of the vehicle, so that LOS designates the target coordinates which are generated by a Radar. In the error analysis, the unexpected behaviors of an EOTS due to the time delay and deadbeat of the digital signals of the vehicle equipments are anticipated and the countermeasures are suggested. The application of this algorithm to an EOTS will improve the operational capability by reducing the time which is required to find the target and support flight especially in the night time flight and the poor weather condition.