• Title/Summary/Keyword: Vehicle Powertrain

Search Result 164, Processing Time 0.028 seconds

Study on Durability Performance Evaluation of Retarder Parts in Testing Mode for Heavy-duty Vehicle (중대형차량 리타더 단품 내구성 평가를 위한 내구시험모드 개발에 관한 연구)

  • Seo, Dongchoon;Lee, Iksung;Ko, Sangchul;Cho, Sanghyun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.6
    • /
    • pp.575-582
    • /
    • 2015
  • The Durability cycle is very important for the success of vehicle testing to evaluate Retarder. The purpose of this study is to develop the durability mode on performance evaluation of retarder. Commercial vehicles are equipped with an auxiliary braking device in order to increase safety. A typical device for retarder depends heavily on imports. Domestic development has now become an urgent task. But, No state has an evaluation method for performance evaluation of the auxiliary braking device. We presented the durability test mode for the performance evaluation of the retarder was verified experimentally.

Analysis of Powertrain Characteristics for Output Split Type Plug-in Hybrid Electric Vehicle (출력분기 기반 플러그인 하이브리드 전기자동차의 동력전달 시스템 특성 분석)

  • Kim, Jeongmin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.1
    • /
    • pp.112-121
    • /
    • 2015
  • In this paper, powertrain of output split type plug-in hybrid electric vehicle is analyzed for the operation range of speed, torque, and power. First, it is assumed that the efficiency of motor is 100%. And, the speed and torque equations are derived based on the lever analogy. With the above equations, the simulations are performed for the powertrain of output split type plug-in hybrid electric vehicle. From the simulation results, it is found that the output torques of EV1 and series modes are larger than the EV2 and power split modes' ones. It means the EV1 and series modes can be used for the rapid acceleration. But the EV1 and series modes can be used only the velocity of under the 120 km/h. It is because the motor reaches its maximum speed when the velocity is over the 120 km/h for the EV1 and series modes. When the engine is turned on, the engine power is transmitted through the two motors. But, the power split mode shows the power split of engine at the output shaft, and it has the point of zero motor power. Thus, the transmission efficiency of the power split mode can be higher than the series mode's one, it the motor efficiency is considered.

A Study on the Electrical and Electronic Architecture of Electric Vehicle Powertrain Domain through Big Data Analysis (빅데이터 분석을 통한 전기차 파워트레인 도메인 전기전자 아키텍처 연구)

  • Kim, Do Kon;Kim, Woo Ju
    • The Journal of Information Systems
    • /
    • v.31 no.4
    • /
    • pp.47-73
    • /
    • 2022
  • Purpose The purpose of this study is to select the electronic architecture concept of the powertrain domain of the electronic platform to be applied to electric vehicles after 2025. Previously, the automotive electrical and electronic architecture was determined only by trend analysis, but the purpose was to determine the scenario based on the data and select it with clear evaluation indicators. Design/methodology/approach This study identified the function to be applied to the powertrain domain of next-generation electric vehicle, estimated the controller, defined the function feature list, organized the scenario candidates with the controller list and function feature list, and selected the final architecture scenario. Findings According to the research results, the powertrain domain of electric vehicles was selected as the architectural concept to apply the DCU (Domain Control Unit) and VCU (Vehicle Control Unit) integrated architecture to next-generation electric vehicles. Although it is disadvantageous or equivalent in terms of cost, it was found to be excellent in most indicators such as stability, security, and hardware demand.

Power-flow Independent Modeling of Vehicle Powertrain (Power-flow에 독립적인 파워트레인 모델링)

  • 최기영;이승종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.267-270
    • /
    • 2001
  • A lot of efforts have been made to analyze the performance of the vehicle equipped with automatic transmission through simulation. It might be necessary to understand the different types of transmissions, i.e., different power flows, for different models. If there is a module that can be applied to different types of automatic transmission, it could be helpful to transmission-related engineers. This study has started up from this idea. The common bond graph has been obtained from several types of the automatic transmission. The overall generalized equations and kinematic constraint equations have been derived using virtual power sources on common bond graph. They are used to derive state equations and constraints. These equations have been applied as an application to the vehicle equipped with two simple planetary gear set type of Ravigneaux gear type automatic transmission. The state equation, kinematic constraints, and dynamic constraints have been derived in every gear and shift operation using overall generalized equations and kinematic constraint equations. Simulations for constraint speed running, standing-start running, rolling-start running, and LA-4 mode have been conducted to analyze the performance of the vehicle powertrain using GVPS(Generalized Vehicle Powertrain Simulation) program wit pull down menus.

  • PDF

Operation Modes of a Power Split Hybrid Electric Vehicle (동력 분기 하이브리드 전기 자동차의 운행 모드 시뮬레이션)

  • Ahn, Kuk-Hyun;Cho, Sung-Tae;Lim, Won-Sik;Park, Yeong-Il;Lee, Jang-Moo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.547-550
    • /
    • 2006
  • The power split hybrid power train is considered to be one of the most prospective configuration for the hybrid electric vehicle (HEV). Toyota Prius, representing this type of vehicle, showed outstanding performances in fuel efficiency, emission reduction and acceleration. The excellence is largely due to the fact that it utilizes almost all operation modes of HEV. Those modes include ZEV (Zero Emission Vehicle) driving, idle stop, fuel cut-off, power assist, active charging, regenerative braking and so forth. In this paper, a few of the mode operations were simulated using AVL Cruise. Also, control logics to operate the powertrain in each mode were developed. The states of powertrain components were displayed and analyzed. By controlling the three components (engine, motor and generator), it was possible to run the powertrain in several hybrid operation modes.

  • PDF

Analysis of Excitation Forces for the Prediction of the Vehicle Interior Noise by the Powertrain (Powertrain에 의한 차량실내소음 예측을 위한 엔진 가진력 해석에 관한 연구)

  • Lee, Joo-Hyung;Kim, Sung-Jong;Kim, Tae-Yong;Lee, Sang-Kwon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.12 s.117
    • /
    • pp.1244-1251
    • /
    • 2006
  • The objective of this paper is to get excitation forces of the engine at each of the brackets for the prediction of the vehicle interior noise by the powertrain. A powertrain geometry model is produced by CATIA and its FE model is made by MSC/Patran. A vibration mode analysis and a running mode analysis are experimentally implemented. After getting a satisfied MAC value by doing a correlation about a measured mode analysis value and analyzed value through MSC/Nastran software, all components are assembled through MSC/ADAMS software which is a dynamic analysis tool. We can predict the vibration of brackets which is the last points to occur the force of the engine combustion by analyzing the combustion force produced by engine mechanism.

Excitation Force Analysis of a Powertrain Based on CAE Technology (CAE를 이용한 파워트레인의 가진력 해석)

  • Kim, Sung-Jong;Lee, Sang-Kwon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.12
    • /
    • pp.107-116
    • /
    • 2008
  • The excitation force of a powertrain is one of major sources for the interior noise of a vehicle. This paper presents a novel approach to predict the interior noise caused by the vibration of the power rain by using the hybrid TPA (transfer path analysis) method. Although the traditional transfer path analysis (TPA) is useful for the identification of powertrain noise sources, it is difficult to modify the structure of a powertrain by using the experimental method for the reduction of vibration and noise. In order to solve this problem, the vibration of the power rain in a vehicle is numerically analyzed by using the finite element method (FEM). The vibration of the other parts in a vehicle is investigated by using the experimental method based on vibrato-acoustic transfer function (VATF) analysis. These two methods are combined for the prediction of interior noise caused by a power rain. Throughout this research, two papers are presented. This paper presents a simulation of the excitation force of the power rain exciting the vehicle body based on numerical simulation. The other paper presents a prediction of interior noise based on the hybrid TPA, which uses the VATF of the car body and the excitation force predicted in this paper.

Automotive Powertrain Modeling with the Combination of the Component (요소결합을 통한 파워트레인 모델링)

  • 서정민;이승종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.301-304
    • /
    • 2002
  • Powertrain simulation is important fur the analysis of a vehicle performance. Automotive powertrain has been considered as the unified system and should be remodeled, whenever a powertrain system is changed. In this study, a new method is proposed for the synthetic modeling for the automotive powertrain. Components are separated from the powertrain system and constructed the matrix through dynamic relationships. The dynamic equation of the total powertrain system can be driven from the combination of each component. In order to combine each component, the superposition method is modified for the powertrain composition.

  • PDF

General Automotive Powertrain Design with the Combination of the Component (요소결합을 통한 범용 파워트레인 성능해석프로그램 개발)

  • 서정민;이승종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.439-442
    • /
    • 2002
  • Powertrain simulation is important far the analysis of a vehicle performance. Automotive powertrain has been considered as the unified system and should be remodeled, whenever a powertrain system is changed. In this study, a new method is proposed far the synthetic modeling for the automotive powertrain. Components are separated from the powertrain system and constructed the matrix through dynamic relationships. The dynamic equation of the total powertrain system can be driven from the combination of each component. In order to combine each component, the superposition method is modified for the powertrain composition.

  • PDF

Vibration Mode of the Drivesystem Considered the Vehicle Body's Dynamic Characteristics (차체의 동특성을 고려한 구동시스템의 진동모드)

  • 유충준
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.2
    • /
    • pp.148-159
    • /
    • 2004
  • This paper discusses vibration mode of the drivesystem considered the vehicle body's dynamic characteristics to study the influence of the vehicle body's dynamic characteristics on the vibration mode of the engine mount system and the ride quality of a vehicle. The simulation model consists of the engine mount system, the powertrain and the rigid or elastic vehicle body. Variables used in this study are the stiffnesses of an engine mount system and the excitation forces. The Goals of the study are analyzing both the vibration transmitted to the vehicle body including the drivesystem and the influence of the vehicle body's dynamic characteristics on the engine mount system. The mode of drivesystems with a rigid and a elastic vehicle body was compared. From the result of the forced vibration analysis for the drivesystem with a elastic vehicle body, it is shown that the vehicle body's dynamic characteristics influence on the engine mount system reciprocally.