• Title/Summary/Keyword: Vehicle Operational Control

Search Result 113, Processing Time 0.023 seconds

Specification Establishment and Verification for KSLV-I EMC Control (나로호의 EMC 통제를 위한 규격설정 및 검증)

  • Ji, Ki-Man
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.3
    • /
    • pp.311-318
    • /
    • 2014
  • Electromagnetic compatibility(EMC) performance of the first Korea space launch vehicle(KSLV-I) should be ensured and verified in order to guarantee the normal operation among the spacecraft, ground facilities which are installed in the space center, and other wireless communication networks. For the purpose of the EMC performance verification, pertinent EMC test specifications, methods, and procedures for both the subsystems and the system should be established in consideration of operational properties and electromagnetic environmental effects. And it is required to maintain and control the EMC properties consistently in accordance with the determined specifications up to the program closing phase. In this paper, sequential management work conducted during the overall development process of the KSLV-I is explained, and not only the phased EMC test plan for each model of the KSLV-I and its subsystem but also test method, specification, and results of the verification tests are presented. And also, multipaction analysis results are presented.

The Study of the Robustness Analysis of the autopilot for the UAV (무인항공기 자동조종장치의 강건성 해석에 관한 연구)

  • Lim, Ho;Kim, Ki-Yeol;Kim, Ho
    • The Journal of Information Technology
    • /
    • v.4 no.3
    • /
    • pp.165-170
    • /
    • 2001
  • In this paper, we proposed an autopilot of the unmanned piloted vehicle to guide to the specific position and analyzed robustness of the designed autopilot. We divide an aircraft velocity into the three case which are low, crusing and high speed, and designed autopilot gains are gain scheduled. We generated the turbulence for the operational altitudes and analyzed performance of the autopilot about it. We proved robustness of the designed autopilot for the turbulence and gust using simulation.

  • PDF

Design of TM/TC data protocol of Military Unmanned Aerial Vehicles (군용 무인기의 TM/TC 데이터 프로토콜 설계)

  • Hong, Su-woon;Kim, Young-kil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.3
    • /
    • pp.506-512
    • /
    • 2018
  • Unmanned aerial vehicles(UAVs) operating in the military for various purposes are designed to transmit information collected according to the purpose to GCS(Ground Control System), and to transmit/receive the vehicle's operational control and status information using wireless communication(or datalink). Currently, the military UAV systems in operation in Korea use unique communication methods, protocols, and message structures for each system. Among these, the Division UAV is designed to transmit fixed size TM/TC data repeatedly and the Corps UAV is designed to transmit aperiodic TM/TC data to the variable length of the message-based. In this paper, we analyze the TM/TC data protocol of existing military UAV systems and present data protocol design method which is considered to be more efficient in wireless communication environment applied to equipment under development. And we will discuss issues to be considered for standardization of technology for ensuring interoperability with many UAVs or newly introduced UAV systems.

Experimental Verification of the Characteristic Analysis of the Aricultural Drone using Smart Operating Mode (스마트 운영 모드를 활용한 농업용 방제 드론의 특성 분석에 관한 실험적 검증)

  • Wooram Lee
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.6
    • /
    • pp.1049-1055
    • /
    • 2023
  • The utilization of agricultural drones for pest control operations has been increasing due to its economic efficiency. However, variations in the effectiveness of these operations occur depending on the operator's proficiency. In this study, we applied a smart operating mode to overcome the limitations of manual flight mode and proposed a numerical model. Through comparative validation with prior research, we conducted experimental verification. As a result, we determined the spray time and calculation of spray area for each drone model. We selected a drone for pest control with a high similarity to the numerical model and verified it experimentally. Through this, we confirmed that the application of the smart operating mode is more effective in terms of calculation of spray area and operational efficiency compared to manual flight mode.

Development of the Localization Algorithm for a Hovering-type Autonomous Underwater Vehicle using Extended Kalman Filter (확장칼만필터를 이용한 호버링타입 무인잠수정의 위치추정알고리즘 개발)

  • Kang, Hyeon-seok;Hong, Sung-min;Sur, Joo-no;Kim, Dong-hee;Jeong, Jae-hun;Jeong, Seong-hoon;Choi, Hyeung-sik;Kim, Joon-young
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.2
    • /
    • pp.171-178
    • /
    • 2017
  • In this paper, in order to verify the performance of a localization algorithm using GPS as an auxiliary sensor, the algorithm was applied to a hovering-type autonomous underwater vehicle (AUV) to perform a field test. The applied algorithm is an algorithm to improve the accumulated positional error of dead reckoning using doppler velocity logger(DVL) and tilt-compensated compass module (TCM) mounted on the AUV. GPS when surfaced helps the algorithm to estimate the position and the heading bias error of TCM for geodetic north, which makes it possible to perform dead reckoning on north-east-down (NED) coordinates. As a result of field test performing heading control, it was judged that the algorithm could improve the positional error, enhance the operational capability of AUV and contribute to the research of underwater navigation depending on a magnetic compass.

Development of a battery management system(BMS) simulator for electric vehicle(EV) cars (EV용 배터리 관리시스템(BMS) 시뮬레이터 개발)

  • Park, Chan-Hee;Kim, Sang-Jung;Hwang, Ho-Suk;Lee, Hee-Gwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.6
    • /
    • pp.2484-2490
    • /
    • 2012
  • This study reports on the development and performance verification of cell simulation boards of simulator and the embedded program for board control of the battery management system (BMS) of electric vehicle (EV) cars, which manages the next-generation automotive lithium-ion battery pack. Here, we have improved the speed of the simulator by using operational (OP) amplifier and transistors that were connected in series. In addition, using a digital analog converter (DAC) in each channel, we have improved the performance by channel-to-channel isolation (isolation) as compared to the traditional methods. Furthermore, by constructing a current-limiting protection circuit, one can be protected from disturbance and, by utilizing a precision shunt resistor for the current sensor, we have increased the precision of the current control. In order to verify the performance of the developed simulator, we have performed the experiment 10 times, with values ranging from 0.5 V to 5 V, and a voltage drop step of 0.5 V. Significance analysis of experimental data, and repeatability tests were performed, showing an average standard deviation of 0.001~0.004 V, indicating high repeatability and high statistical significance of the current method and system.

Methodology for Real-time Detection of Changes in Dynamic Traffic Flow Using Turning Point Analysis (Turning Point Analysis를 이용한 실시간 교통량 변화 검지 방법론 개발)

  • KIM, Hyungjoo;JANG, Kitae;KWON, Oh Hoon
    • Journal of Korean Society of Transportation
    • /
    • v.34 no.3
    • /
    • pp.278-290
    • /
    • 2016
  • Maximum traffic flow rate is an important performance measure of operational status in transport networks, and has been considered as a key parameter for transportation operation since a bottleneck in congestion decreases maximum traffic flow rate. Although previous studies for traffic flow analysis have been widely conducted, a detection method for changes in dynamic traffic flow has been still veiled. This paper explores the dynamic traffic flow detection that can be utilized for various traffic operational strategies. Turning point analysis (TPA), as a statistical method, is applied to detect the changes in traffic flow rate. In TPA, Bayesian approach is employed and vehicle arrival is assumed to follow Poisson distribution. To examine the performance of the TPA method, traffic flow data from Jayuro urban expressway were obtained and applied. We propose a novel methodology to detect turning points of dynamic traffic flow in real time using TPA. The results showed that the turning points identified in real-time detected the changes in traffic flow rate. We expect that the proposed methodology has wide application in traffic operation systems such as ramp-metering and variable lane control.

A Study of the Development Test and Evaluation and Verification Procedure of a Multi-Mission USV, M-Searcher (복합임무 무인수상정의 개발시험평가 및 검증절차에 관한 고찰)

  • Park, hin-Bae;Kim, Won-Jae;Lee, Kurnchul
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.5
    • /
    • pp.402-409
    • /
    • 2018
  • This paper describes the plan and procedure of a development test and evaluation that will be performed to verify the performance and technology of multi-mission unmanned surface vehicles (MMUSVs). In order to verify the design requirement of MMUSVs, we designed and manufactured the common platform of MMUSVs, which have an overall length of8.4 m, a displacement of 3,100 kg, and a speed of more than35 kts. The platform is equipped with several sub-systems, including radar and an EOTS/IRS. The EOTS/IRS, along with the search radar, is used for effective detection, identification, and targeting. The core technologies of MMUSV for DT&E will be investigated. The common platform design technologies, remote operating and control system technologies, autonomous navigation technologies, and unmanned operational technology of sensors and equipment will be studied for the development of the MMUSV's core technologies. The system will be able to make precise observations and track targets both manually and automatically during day and night conditions. Currently, the verification tests for each of the technologies and for the integrated system are in the pipeline for DT&E, which will be performed next year. Also, software reliability and life tests will be performed.

Development of an Algorithm for Dynamic Traffic Operations of Freeway Climbing Lane Toward Traffic Safety (교통안전성을 고려한 고속도로 오르막차로 동적운영 알고리즘 개발)

  • PARK, Hyunjin;YOUN, Seokmin;OH, Cheol
    • Journal of Korean Society of Transportation
    • /
    • v.34 no.1
    • /
    • pp.68-80
    • /
    • 2016
  • Interest in freeway truck traffic has increased largely due to greater safety concerns regarding truck-related crashes. The negative interactions between slow-moving trucks and other vehicles are a primary cause of hazardous conditions, which lead to crashes with larger speed variations. To improve operational efficiency and safety, providing a climbing lane that separates slow-moving trucks from higher performance vehicles is frequently considered when upgrading geometrics. This study developed an operations strategy for freeway climbing lanes based on traffic conditions in real time. To consider traffic safety when designing a dynamic strategy to determine whether a climbing lane is closed or open, various factors, including the level of service (LOS) and the percentage of trucks, are investigated through microscopic simulations. A microscopic traffic simulator, VISSIM, was used to simulate freeway traffic streams and collect vehicle-maneuvering data. Additionally, an external application program interface, VISSIM's COM-interface, was used to implement the proposed climbing lane operations strategies. Surrogate safety measures (SSM), including the frequency of rear-end conflicts and, were used to quantitatively evaluate the traffic safety using an analysis of individual vehicle trajectories obtained from VISSIM simulations with various operations scenarios. It is expected that the proposed algorithm can be the backbone for operating the climbing lane in real time for safer traffic management.

Automated Driving Aggressiveness for Traffic Management in Automated Driving Environments (자율주행기반 교통운영관리를 위한 ADA 개념 정립 및 적용 기법 개발)

  • LEE, Seolyoung;OH, Minsoo;OH, Cheol;JEONG, Eunbi
    • Journal of Korean Society of Transportation
    • /
    • v.36 no.1
    • /
    • pp.38-50
    • /
    • 2018
  • Emerging automated driving environments will lead to a mixed traffic flow depending on the interaction between automated vehicles (AVs) and manually driven vehicles (MVs) because the market penetration rate (MPR) of AVs will gradually increase over time. Understanding the characteristics of mixed traffic conditions, and developing a method to control both AV and MV maneuverings smoothly is a backbone of the traffic management in the era of automated driving. To facilitate smooth vehicle interactions, the maneuvering of AVs should be properly determined by various traffic and road conditions, which motivates this study. This study investigated whether the aggressiveness of AV maneuvering, defined as automated driving aggressiveness (ADA), affect the performance of mixed traffic flow. VISSIM microscopic simulation experiments were conducted to derive proper ADAs for satisfying both the traffic safety and the operational efficiency. Traffic conflict rates and average travel speeds were used as indicators for the performance of safety and operations. While conducting simulations, level of service(LOS) and market penetration rate(MPR) of AVs were also taken into considerations. Results implies that an effective guideline to manage the ADA under various traffic and road conditions needs to be developed from the perspective of traffic operations to optimize traffic performances.