• Title/Summary/Keyword: Vehicle Mobility

Search Result 389, Processing Time 0.024 seconds

A Mechanism to Support Scalability for Network Mobility (확장성 있는 네트워크 이동성 지원 방안)

  • Kim Taeeun;Lee Meejeong
    • Journal of KIISE:Information Networking
    • /
    • v.32 no.1
    • /
    • pp.34-50
    • /
    • 2005
  • Recently, various proposals for supporting network mobility, which provides efficient Internet access when a network formed within a vehicle moves around as a unit, have emerged. The schemes in those proposals, though, manifest some major drawbacks with respect to scalability: If the number of mobile nodes within a mobile network is large, the handoff latency would increase greatly, causing communication disruption; Data delivery to a node within a nested mobile network nay suffer extremely inefficient pinball routing. We propose a scalable network mobility supporting mechanism named SNEMOS (Scalable NEtwork Mobility Support), which resolves the above two major problems of the existing schemes. The performance of SNEMOS is compared with the existing schemes through extensive simulations. The numerical results show that SNEMOS outperforms the existing schemes with respect to handoff latency hop counts of routing paths, packet delivery time, header overhead in data packets, and signaling overhead.

The Steering Characteristics of Military Tracked Vehicles with Considering Slippage of Roadwheel (로드휠의 슬립을 고려한 군용 궤도차량의 조향특성에 관한 연구)

  • Lim, Won-Sik;Yoon, Jae-Seop;Kang, Sang-Wook
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.2
    • /
    • pp.57-66
    • /
    • 2009
  • In this paper, the steering characteristics of tracked vehicles are studied for the improvement of steering performance. The important design factor of military vehicles is high mobility. It is influenced by weight of a vehicle, engine capacity, power-train, and steering system. The military vehicle, which is equipped with caterpillar, has unique steering characteristics and is quite different from that of a wheeled vehicle. The steering of tracked vehicles is operated in the power pack due to different speeds of both sprockets. Under cornering conditions, power split and power regeneration are happened in the power pack. In case of power regeneration, power is transferred outside track after adding engine power and power inputted inside track from the ground. However, excessive power regeneration is transferred in the power pack. It damages mechanical elements. Therefore, it is necessary to analyze the steering system and check mentioned problem above. In this study, the detailed dynamic model of steering system is presented, which includes slippage between track and roadwheel, inertia force, and inertia moment. Finally, our model is compared with the Kitano model and we verified the validity of the model.

Priority Based Clustering Algorithm for VANETs (VANET 환경을 위한 우선순위 기반 클러스터링 알고리즘)

  • Kim, In-hwan
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.8
    • /
    • pp.637-644
    • /
    • 2020
  • VANET (Vehicular Ad Hoc Networks) is a network between vehicles and between vehicles and infrastructure. VANET-specific characteristics such as high mobility, movement limitation, and signal interference by obstacles make it difficult to provide stable VANET services. To solve this problem, this paper proposes a vehicle type-based priority clustering method that improves the existing bus-based clustering. The proposed algorithm constructs a cluster by evaluating the priority, link quality, and connectivity based on the vehicle type, expected communication lifetime, and link degree of neighbor nodes. It tries to simplify the process of selecting a cluster head and increase cluster coverage by utilizing a predetermined priority based on the type of vehicle. The proposed algorithm is expected to become the basis for activating various services by contributing to providing stable services in a connected car environment.

The evaluation of diesel emission reduction characteristics by DOC in light-duty vehicle (소형디젤산화촉매의 배출가스 성능평가)

  • 엄명도;류정호;임철수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.8
    • /
    • pp.34-42
    • /
    • 1999
  • In late 1997, the portion of registered light-duty diesel vehicle was 25.3% and its emission rate was 17.1% in Korea. Especially, diesel particulate matters(DPM) and NOx are hazardous air pollutants to human health and environment in urban area. The reduction technologies of exhaust emissions from diesel engines are improvement of engine combustion, fuel quality and development of diesel exhaust after treatment , In this study , a light-duty diesel oxidation catalyst(DOC) that is one of the diesel exhaust after treatment was made for performance evaluation and the emission characteristics were tested on CVS-75 mode. And the analysis of the particle size distribution with scanning mobility particle 100, 67.6% and 66.7, 10.0% for Pt and Pt-V catalyst .And for Pt catalyst, the PM increased 7.8% because of increasing sulfate but Pt-V catalyst reduced the PM to 23.0% . Test results of particle size distribution showed that peak values of number and mass densities are respectively 100∼200nm their distribution trend independent of vehicle speed.

  • PDF

Design Specifications of Car body and Interiors for Bimodal Tram Vehicle (바이모달 트램 차량용 차체 및 실내의장의 설계사양)

  • Kim, Yeon-Su;Lim, Song-Gyu;Mok, Jai-Kyun;Park, Tae-Young;Cho, Se-Hyun
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.975-979
    • /
    • 2008
  • Since tram has the advantages to reduce construction cost of infrastructure, to improve accessibility of passengers, and to offer visual pleasures, nowadays, it is one of light rails attracting public attention. Tram can be classified into two groups, one is a conventional steel-wheeled type, and the other is a rubber-tired type (bi-modal tram). The bi-modal tram propelled by the serial CNG hybrid propulsion unit has been developing since 2003 in Korea, which can realize both scheduled operation of railway and route flexibility of bus. Because the bimodal will be operated on both railway mode and bus mode, however, specific criteria and regulations for its design, certification, construction, operation and maintenance have not been determined definitely yet. In consideration of mobility enhancement for the old and the handicapped, motor vehicle safety standard and urban transit (railway vehicle) safety standard, several design specifications were proposed for car body and interiors of the bimodal tram vehicle. The design specifications proposed in this paper can be expected to promote passengers' comfort and safety, operation efficiency of the bimodal tram.

  • PDF

The Safety Assessment of Wheelchair Occupants in Road Passenger Vehicles with the Frontal Crash: a Computer Simulation (시뮬레이션 기법을 이용한 차량내 전동휠체어 탑승자의 전방 충돌시 안전에 관한 연구)

  • Lee, Young-Shin;Lee, Ki-Du;Lim, Hyun Kyoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.11 s.242
    • /
    • pp.1518-1526
    • /
    • 2005
  • With increasing need of transportation services for people with disabilities and the aged, wheelchairs are used as their assistive devices to participate in daily and recreational activities and as seats of motor vehicle. However, as wheelchairs are primarily designed fer mobility assistive devices, not for vehicle seats, wheelchair users may experience serious injury when they meet car crashes. To date, neither engineering guidance for a wheelchair mounting system on the vehicle floor nor safety assessment analysis by a car crash has been studied for the domestic users. In this paper, in accordance with the ANSVRESNA WC-19, a fixed vehicle mounted wheelchair occupant restraint system (FWORS), wheelchair integrated restraint system (WIRS), and wheelchair integrated x-bend restraint system (WIXRS) subjected to frontal impact (20 g, 48 U) were analyzed using compute. simulations for domestic users. We present surrogate wheelchair occupant safety by head injury criteria (HIC), motion criteria (MC), and combined injury criteria (CIC).

Development of Tele-operation Interface and Stable Navigation Strategy for Humanoid Robot Driving (휴머노이드 로봇의 안전한 차량 주행 전략 및 원격 제어 인터페이스 개발)

  • Shin, Seho;Kim, Minsung;Ahn, Joonwoo;Kim, Sanghyun;Park, Jaeheung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.11
    • /
    • pp.904-911
    • /
    • 2016
  • This paper presents a novel driving system by the humanoid robot to drive a vehicle in disaster response situations. To enhance robot's capability for substituting human activities in responding to natural and man-made disaster, the one of prerequisite skills for the rescue robot is the mounted mobility to maneuver a vehicle safely in disaster site. Therefore, our driving system for the humanoid is developed in order to steer a vehicle through unknown obstacles even under poor communication conditions such as time-delay and black-out. Especially, the proposed system includes a tele-manipulation interface and stable navigation strategies. First, we propose a new type of path estimation method to overcome limited communication. Second, we establish navigation strategies when the operator cannot recognize obstacles based on Dynamic Window Approach. The effectiveness of the proposed developments is verified through simulation and experiments, which demonstrate suitable system for driving a vehicle in disaster response.

Modified $A^*$ - Local Path Planning Method using Directional Velocity Grid Map for Unmanned Ground Vehicle (Modified $A^*$ - 방향별 속도지도를 활용한 무인차량의 지역경로계획)

  • Lee, Young-Il;Lee, Ho-Joo;Park, Yong-Woon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.327-334
    • /
    • 2011
  • It is necessary that UGV(Unmanned Ground Vehicle) should generate a real-time travesability index map by analyzing raw terrain information to travel autonomously tough terrain which has various slope and roughness values. In this paper, we propose a local path planning method, $MA^*$(Modified $A^*$) algorithm, using DVGM (Directional Velocity Grid Map) for unmanned ground vehicle. We also present a path optimization algorithm and a path smoothing algorithm which regenerate a pre-planned local path by $MA^*$ algorithm into the reasonable local path considering the mobility of UGV. Field test is conducted with UGV in order to verify the performance of local path planning method using DVGM. The local path planned by $MA^*$ is compared with the result of $A^*$ to verify the safety and optimality of proposed algorithm.

Hierarchical Object Recognition Algorithm Based on Kalman Filter for Adaptive Cruise Control System Using Scanning Laser

  • Eom, Tae-Dok;Lee, Ju-Jang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.496-500
    • /
    • 1998
  • Not merely running at the designated constant speed as the classical cruise control, the adaptive cruise control (ACC) maintains safe headway distance when the front is blocked by other vehicles. One of the most essential part of ACC System is the range sensor which can measure the position and speed of all objects in front continuously, ignore all irrelevant objects, distinguish vehicles in different lanes and lock on to the closest vehicle in the same lane. In this paper, the hierarchical object recognition algorithm (HORA) is proposed to process raw scanning laser data and acquire valid distance to target vehicle. HORA contains two principal concepts. First, the concept of life quantifies the reliability of range data to filter off the spurious detection and preserve the missing target position. Second, the concept of conformation checks the mobility of each obstacle and tracks the position shift. To estimate and predict the vehicle position Kalman filter is used. Repeatedly updated covariance matrix determines the bound of valid data. The algorithm is emulated on computer and tested on-line with our ACC vehicle.

  • PDF

A Study on Propulsion Control Device Characteristics of Small-scale Electric Railway Vehicle according to Driving Curve Tracking using Fuel Cell Generation System (연료전지 발전시스템을 이용한 축소형 철도차량의 운전곡선 추종에 따른 추진제어장치 특성 고찰)

  • Jung, No-Geon;Chang, Sang-Hoon;Kim, Jae-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.12
    • /
    • pp.1804-1809
    • /
    • 2015
  • The study in railway system to apply a fuel cell system with high efficiency and mobility than other renewable energy is being actively conducted. It is needed a analysis on load characteristics and control method of rolling stock in order to apply to rolling stock. This paper presents study on control small-scale prototype power converter electric railway vehicle using fuel cell generation system. Experiment is conducted through real fuel cell generation system and reference speed applying the driving curve of the actual electric railway vehicle was applied. Also, output voltage of boost converter is controlled considering characteristic of fuel cell. And it was confirmed characteristic according to powering and regeneration of inverter.