• Title/Summary/Keyword: Vehicle Mobility

Search Result 389, Processing Time 0.027 seconds

Structural Sizing for Optionally Piloted PAV Preliminary Design (유무인 겸용 개인항공기(OPPAV) 개념설계를 위한 구조물 사이징)

  • Kim, Sung Joon;Lee, Seung-gyu
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.28 no.1
    • /
    • pp.83-89
    • /
    • 2020
  • Personal air vehicle (PAV) is considered by aviation engineers as a solution to provide fast urban mobility. The purpose of designing a optionally piloted PAV (OPPAV) is to provide an individual air vehicle. The airframe structure is designed with high strength carbon fiber composite to reduce the aircraft weight. This paper presents an overview of sizing process for OPPAV at the conceptual design level. It consists of load analysis, structural sizing and development of efficient design allowable values for composite material. The weight is estimated based on sizing process, including strength and stiffness requirements. The objective of this study is to present a overview of structural sizing procedure and fast tool for preliminary design phases.

Revenue Maximizing Scheduling for a Fast Electric Vehicle Charging Station with Solar PV and ESS

  • Leon, Nishimwe H.;Yoon, Sung-Guk
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.3
    • /
    • pp.315-319
    • /
    • 2020
  • The modern transportation and mobility sector is expected to encounter high penetration of Electric Vehicles (EVs) because EVs contribute to reducing the harmful emissions from fossil fuel-powered vehicles. With the prospective growth of EVs, sufficient and convenient facilities for fast charging are crucial toward satisfying the EVs' quick charging demand during their trip. Therefore, the Fast Electric Vehicle Charging Stations (FECS) will be a similar role to gas stations. In this paper, we study a charging scheduling problem for the FECS with solar photovoltaic (PV) and an Energy Storage System (ESS). We formulate an optimization problem that minimizes the operational costs of FECS. There are two cost and one revenue terms that are buying cost from main grid power, ESS degradation cost, and revenue from the charging fee of the EVs. Simulation results show that the proposed scheduling algorithm reduces the daily operational cost by effectively using solar PV and ESS.

EV Spreads and Semiconductor Convergence Study according to Price Inflection Points

  • Dae Sung Seo
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.2
    • /
    • pp.202-209
    • /
    • 2023
  • This study aims to analyze the correlation between semiconductor innovation and market dominance in the mobility electric vehicle industry. To this end, the study presentsstrategiesthat provide low-price competitiveness along with high-value creation in the electric vehicle and semiconductor markets. The first change in the era of high interest rates is to overcome the crisis of survival for value. Furthermore, the study acknowledges the ongoing second wave of change as the digital technology's value continues to rise, and companies experience decreased productivity due to rising ESG labor costs. The study analyzed price competitiveness in the context of the increased adoption of electric vehicles and the integration of semiconductor prices, proving that Tesla and Samsung Semiconductor have developed technology to dominate the market, with appropriate low-cost strategies applied as the value of innovation declines.

An Analysis of the Research Trend on Smart Mobility : Topic Modeling Approach (스마트 모빌리티 연구 동향에 관한 분석 : 토픽 모델링의 적용)

  • Park, Jungtae;Kim, Choongyoung;Kim, Taejong
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.2
    • /
    • pp.85-100
    • /
    • 2022
  • Recently, with the widespread expansion of convergence based on digital connectivity, the transportation and mobility fields are rapidly changing, and research related to this is also diversifying. This study aims to analyze the research trends in the mobility field and identify key research areas and topics. Topic modeling analysis has been proved as a useful approach for analyzing the research trends. The abstracts of 142 research papers concerning mobility from the Korean academic citation index were analyzed, derived 9 research topics and linked to 6 key elements of research framework. The result showed that 'Advanced vehicle and transportaion technology' and 'Linkage and integrated services among means for mobility' were most actively studied research fields. It also found that research on insurance, law, regulation for securing user's safety and conflict-resolving with the existing industry has been conducted.

The effect of wearing a helmet on head injury risks among personal mobility vehicle riders: A study of patients who visited a regional emergency medical center due to traffic accidents (개인형 이동수단별 헬멧 착용 유무가 두부 손상에 미치는 영향: 일개 권역응급의료센터에 교통사고로 내원한 환자를 대상으로)

  • So-Yeon An;Yong-Joon Kim;Kyoung-Yul Sim;Kyoung-Youl Lee
    • The Korean Journal of Emergency Medical Services
    • /
    • v.27 no.2
    • /
    • pp.7-17
    • /
    • 2023
  • Purpose: This study aimed to identify the factors that contribute to head injuries among drivers of personal mobility devices and provide insights into safety perceptions. Methods: This retrospective study analyzed data of 221 trauma patients obtained from electronic medical records and the National Emergency Department Information System (NEDIS) over one year, from August 1, 2021, to July 31, 2022. The patients, all in their 20s and 30s, presented to a single emergency medical center following personal mobility device accidents (motorcycles, electric scooters, and bicycles). Results: Among motorcycle riders, 18.2% were not wearing helmets, while the percentage of e-scooter riders not wearing helmets was 87.5%. Wearing a helmet was associated with a 71.2% lower likelihood of head injuries (OR=0.288, CI=0.163 to 0.509, p=0.000). Of the personal mobility devices, motorcycles had a 0.431 times lower odds ratio for head injury compared to e-scooters (p=0.009), and there was no significant difference between e-scooters and bicycles (p=0.776). Conclusion: It is imperative to strengthen safety regulations by mandating helmet use for riders of personal mobility devices. A system to enhance driving enforcement for electric scooters, which are increasingly popular among young adults, should also be established.

Research on Unmanned Aerial Vehicle Mobility Model based on Reinforcement Learning (강화학습 기반 무인항공기 이동성 모델에 관한 연구)

  • Kyoung Hun Kim;Min Kyu Cho;Chang Young Park;Jeongho Kim;Soo Hyun Kim;Young Ghyu Sun;Jin Young Kim
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.6
    • /
    • pp.33-39
    • /
    • 2023
  • Recently, reinforcement learning has been used to improve the communication performance of flying ad-hoc networks (FANETs) and to design mobility models. Mobility model is a key factor for predicting and controlling the movement of unmmaned aerial vehicle (UAVs). In this paper, we designed and analyzed the performance of Q-learning with fourier basis function approximation and Deep-Q Network (DQN) models for optimal path finding in a three-dimensional virtual environment where UAVs operate. The experimental results show that the DQN model is more suitable for optimal path finding than the Q-learning model in a three-dimensional virtual environment.

A Study on Dynamic Modeling for Underwater Tracked Vehicle (트랙기반 수중건설로봇의 운동 모델링에 관한 연구)

  • Choi, Dong-Ho;Lee, Young-Jin;Hong, Sung-Min;Vu, Mai The;Choi, Hyeung-Sik;Kim, Joon-Young
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.5
    • /
    • pp.386-391
    • /
    • 2015
  • The mobility of tracked vehicles is mainly influenced by the interaction between the tracks and soil. When the track of a tracked vehicle rotates, there will be a slip effect between the track and the soil, which creates a track shear force and the vehicle’s driving force. In this paper, the modeling of a working tool such as a trenching cutter and a tracked vehicle that is the lower frame of a track-based operating robot was performed. In addition, a numerical simulation was executed to verify the performance of the design objectives and the motion characteristics of the combined system.

Distributed Antenna System for Intra-vehicle Wireless Energy Transfer (차량 내 무선 에너지 전송을 위한 분산 안테나 시스템)

  • Kim, Yeonghwan;Kwon, Kuhyung;Lee, Chungyong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.2
    • /
    • pp.3-8
    • /
    • 2017
  • This paper considers an application of distributed antenna system (DAS) to a system of intra-vehicle wireless energy transfer (WET). The intra-vehicle WET system has features such as limited mobility of energy receiver, static channel environment and short distance between transmitter and human body. Under these conditions, location of transmitter highly affects the amount of energy received by human body and the energy received by energy receiving devices. We compare centralized antenna system (CAS) and the DAS in intra-vehicle WET system by simulation. The results show the DAS has superior performance to the CAS.

Derivation of Constraint Factors Affecting Passenger's In-Vehicle Activity of Urban Air Mobility's Personal Air Vehicle and Design Criteria According to the Level of Human Impact (도심항공모빌리티 비행체 PAV 탑승자 실내행위에 영향을 미치는 제약 요소 도출 및 인체 영향 수준에 따른 설계 기준)

  • Jin, Seok-Jun;Oh, Young-Hoon;Ju, Da Young
    • Science of Emotion and Sensibility
    • /
    • v.25 no.1
    • /
    • pp.3-20
    • /
    • 2022
  • Recently, prior to the commercialization of urban air mobility (UAM), the importance of R&D for air transportation-related industries in urban areas has significantly increased. To create a UAM environment, research is being conducted on personal air vehicles (PAVs). They are key means of air transportation, but research on the physical factors influencing their passengers is relatively insufficient. In particular, because the PAV is expected to be used as a living space for the passengers, research on the effects of the physical elements generated in the PAV on the human body is essential to design an interior space that supports the in-vehicle activities of the passengers. Therefore, the purpose of this study is to derive the constraint factors that affect the human body due to the air navigation characteristics of the PAV and to understand the impact of these constraint factors on the bodies of the passengers performing in-vehicle activities. The results of this study indicate that when the PAV was operated at less than 4,000 ft, which is the operating standard, the constraint factors were noise, vibration, and motion sickness caused by low-frequency motion. These constraint factors affect in-vehicle activity; thus, the in-vehicle activities that can be performed in a PAV were derived using autonomous cars, airplanes, and PAV concept cases. Furthermore, considering the impact of the constraint factors and their levels on the human body, recommended constraint factor criteria to support in-vehicle activities were established. To reduce the level of impact of the constraint factors on the human body and to support in-vehicle activity, the seat's shape and built-in functions of the seat (vibration reduction function, temperature control, LED lighting, etc.) and external noise reduction using a directional speaker for each individual seat were recommended. Moreover, it was suggested that interior materials for noise and vibration reduction should be used in the design of the interior space. The contributions of this study are the determination of the constraint factors affecting the in-vehicle PAV activity and the confirmation of the level of impact of the factors on the human body; in the future, these findings can be used as basic data for suitable PAV interior design.

Simulation of Rollover Crashes and Passenger Injury Assessment for a Wheeled Armored Vehicle (차륜형 전투차량 전복 시 승무원 안전성 확보를 위한 시뮬레이션 연구)

  • Lee, Gyung-Soo;Jung, Ui-Jin;Park, Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.4
    • /
    • pp.385-391
    • /
    • 2014
  • A wheeled armored vehicle is a military vehicle that has been developed to enhance combat capabilities and mobility for the army. The wheeled armored vehicle has a high center of gravity, and it operates on unpaved and sloped roads. Therefore, this vehicle has a high risk of rollover crashes. To design the interior of the military vehicle, the crew's safety during rollover crashes is an important factor. However, actual vehicle tests for design are extremely expensive. In this paper, nonlinear dynamic analysis is performed to simulate the rollover crashes and the passenger injury is assessed for a wheeled armored vehicle. The scope of this research is the rollover condition, FE modeling of the wheeled armored vehicle and the dummy, arrangement of dummies, assessment of passenger injuries, and simulation model for rollover crashes.