• 제목/요약/키워드: Vehicle Lightweight

Search Result 162, Processing Time 0.035 seconds

Prestudy on Expendable Turbine Engine for High-Speed Vehicle (초고속 비행체용 소모성 터빈엔진 사전연구)

  • Kim, YouIl;Hwang, KiYoung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.1
    • /
    • pp.97-102
    • /
    • 2013
  • A prestudy on expendable turbine engine for high-speed vehicle was conducted. After two possible mission profiles were established to decide the engine requirements, design point analysis was performed with the values of design parameter which were obtained from similar class engines, references, etc. The results showed that specific net thrust and specific fuel consumption with turbine inlet temperature of 3,600 R are 2,599.4 ft/s and 1.483 lb/(lb*h) respectively at the flight condition of sea level, Mach 1.2. It was also found that major design parameters for determining maximum net thrust were turbine inlet temperature for low supersonic and transonic flight speed and compressor exit temperature for high supersonic flight speed from the results of performance analysis on the two possible mission profiles. In addition, simple turbojet engine with an axial compressor, a straight annular combustor, an one stage axial turbine and a fixed throat area converge-diverge exhaust nozzle was proposed as the configuration of simple low cost lightweight turbine engine.

Development of Electromagnetic Active Engine Mount (전자식 능동 엔진 마운트 개발)

  • Hong, Sung-Woo;Lee, Ho-Chul;Choi, Sang-Min;Kim, Jeong-Hoon;Lee, Dong-Wook
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.280-281
    • /
    • 2008
  • In pursuit of decreasing noise and vibration, the electromagnetic active control mount(ACM) is developed which is corresponding with the tendency of greater fuel efficiency, higher engine power and lower lightweight vehicle. In process of developing the ACM, making patent searches and benchmarking are performed first, and then robust mount design which is reflected on the users' demand through Design For Six Sigma(DFSS) is carried out. The manufactured prototype of ACM is tested in various environmental conditions for the purpose of ensuring the performance quantitatively.

  • PDF

Evaluation for Joint performance of the Hybrid Composite Carbody Structure (하이브리드 복합재 차체의 접합부 특성 평가)

  • Jeong Jong-Cheol;Cho Se-Hyun;Cho Hyun-Joo;Shin Kwang-Bok;Yoon Sung-Ho
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.185-188
    • /
    • 2004
  • Regarding some of the components of the Korean Tilting Train eXpress(TTX), the lightweight-vehicle development was mainly focused to this study, and so as using the materials, the existing material, steel or aluminum carbody was changed to the composite carbody with both design and manufacturing methods. Therefore the evaluation of the performance of joint strength between composite and metallic boundary area, especially the under frame and the carbody was required, and the compressive and the bending tests were conducted as the sub-scale specimen. In this evaluation, there was involved the sufficient strengths at the joint area between the underframe and the carbody, and is resulted as the increment of the safety factor through the observation of failure conditions.

  • PDF

A Study on Recoil Force Reduction Using a Low-recoil Direct Gun (저반동 전차포의 주퇴력 저감 연구)

  • Park, Jin-Saeng
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.5
    • /
    • pp.125-130
    • /
    • 2016
  • A low-recoil direct gun is useful in reducing the fire impulse generated by using a traditional shell. To apply a control equation to an AMESim Model, we have formulated a control equation for a recoil mechanism from the free object diagram. By modeling this equation, we have been able to compare the recoil distance and recoil force of a low-recoil direct gun. Here, we can analyze the recoil characteristics between traditional direct guns and low-recoil direct guns with perforated muzzle brakes. It is possible to mount a low-recoil direct gun with a perforated muzzle brake on a lightweight tracked vehicle by reducing its fire impulse.

The Development Plan of TTX Hybrid Carbody Structures and Study on Foreign Cases (TTX 하이브리드 차체 개발 방향과 국외 사례 분석)

  • Shin Kwang-Bok;Cho Se-Hyun;Lee Sang-Jin
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.34-37
    • /
    • 2004
  • Tilting trains could offer a low cost solution as they can be operated on existing track and attain higher speeds (as compared to conventional trains) thanks to a mechanism that tilts the vehicle body of the train when negotiating curves, thus giving it additional superelevation Also, the weight saving of the carbody structures of the tilting train is a significant problem to operate the tilting mechanism without failure and to minimize wear and tear on wheels and rails. Therefore, the TTX will be developed using hybrid design concept to match the challenging demands with respect to cost efficient lightweight design for carbody structures. Hybrid design helps to save production costs and to reduce the weight of carbodies.

  • PDF

Quality Evaluation of Hard Anodizing Zone for Lightness of the EV Brake Disks (EV 브레이크 경량화를 위한 하드아노다이징 부의 성능 평가)

  • Park, C.S.;Sung, B.S.;Cha, Y.H.;Kim, J.Y.;Lee, J.H.;Park, Y.S.;Kang, D.J.
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.1
    • /
    • pp.90-94
    • /
    • 2012
  • This study evaluates the strength of surface treatment parts using the hard anodizing method to the aluminum alloy brake disks. In order to achieve weight reduction of vehicles, Eco-friendly cars parts of the high-quality and competitive price is to equip. Especially while pursuing parts of weight reduction, it has to maintain the strength of the surface of the brake by nature. To enhance surface strength of aluminum alloy, we use hard anodizing technology in the surface treatment. This study is resulted of 3 times greater the hardness value of the hard anodized specimen than the aluminum alloy specimen for the lightweight parts of EV brake disk

Study on the Suitability of Composite Materials for Enhancement of Automotive Fuel Economy (자동차 연비향상을 위한 복합재료 적용 타당성에 관한 연구)

  • Ju, Yeon Jin;Kwon, Young-Chul;Choi, Heung Soap
    • Composites Research
    • /
    • v.32 no.5
    • /
    • pp.284-289
    • /
    • 2019
  • In the present paper, the dynamic force-moment equilibrium equations, driving power and energy equations are analyzed to formulate the equation for fuel economy(km/liter) equivalent to the driving distance (km) divided by the fuel volume (liter) of the vehicle, a selected model of gasoline powered KIA K3 (1.6v). In addition, the effects of the dynamic parameters such as speed of vehicle (V), vehicle total weight(M), rolling resistance ($C_r$) between tires and road surface, inclined angle of road (${\theta}$), as well as the aerodynamic parameters such as drag coefficient ($C_d$) of vehicle, air density(${\rho}$), cross-sectional area (A) of vehicle, wind speed ($V_w$) have been analyzed. And the possibility of alternative materials such as lightweight metal alloys, fiber reinforced plastic composite materials to replace the conventional steel and casting iron materials and to reduce the weight of the vehicle has been investigated by Ashby's material index method. Through studies, the following results were obtained. The most influencing parameters on the fuel economy at high speed zone (100 km/h) were V, the aerodynamic parameters such as $C_d$, A, ${\rho}$, and $C_r$ and M. While at low speed zone (60 km/h), they are, in magnitude order, dynamic parameters such as V, M, $C_r$ and aerodynamic ones such as $C_d$, A, and ${\rho}$, respectively.

A Study on the Problems and Improvement Solutions for the Ambulance Stretcher (119구급대 주들것의 문제점과 그 개선방안에 관한 연구)

  • Ham, Seung Hee;Song, Woo Seung;Yoon, Myung O
    • Fire Science and Engineering
    • /
    • v.28 no.3
    • /
    • pp.72-79
    • /
    • 2014
  • The purpose of this study is to draw the improvement plan through the analysis of problems of main stretchers that are being used by the 119 EMS. In order to find out the problems, we used the literature review and analysis, survey questionnaire and we also made full use of KJ method (Kawakita Jiro method, affinity diagram), graph method, and priority matrix method to produce the improvement indicators. The problems of main stretchers are summarized as follows. they are being recognized as part of the emergency vehicle, they have the imperfection of performance verification criteria, and they cause the injuries of paramedics and patients accidents in operation. The indicators such as the ease of operation, the high performance, the multi-function, the driving performance, the durability and the lightweight, was produced to improve the problems. The results of the interconnection analysis and the applying priority matrix method on the indicators are the ease of operation ${\rightarrow}$ the multi-function ${\rightarrow}$ the driving performance ${\rightarrow}$ the high performance ${\rightarrow}$ the durability and the lightweight in order of importance.

Planning and Design of Monorail Bridges (모노레일 교량의 계획 및 설계)

  • Han, Nock-Hee;Yoo, Je-Nam;Lee, Sumg-Min
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1174-1187
    • /
    • 2007
  • Monorail System has many advantages compared with other Urban Lightweight Transit Systems, such as the friendliness of the vehicle's appearance, slenderness of the bridge structures, it's low construction cost and short construction period. So, lots of city governments have reviewed or proposed the Monorail System as the attractive alternative system. And recently, Daegu Metropolitan City Government have chosen the Monorail System for the Urban Railroad Line 3. According to these trends on Urban Lightweight Transit Systems, this paper has introduced the outline of the planning and design of Monorail Bridges. At first, trends of overseas Monorail Bridges have been reviewed and the principal design criteria adopted in the basic design of the Urban Railroad Line 3 for Daegu have been introduced. And next, the methods of planning, design, fabrication of the guideway beams which are made of PSC Beam or Steel Beam have been explained. We hope this paper be helpful for the Engineers who are interested in the Monorail Bridges.

  • PDF

A parametric Study in Incremental Forming of Magnesium Alloy Sheet (인크리멘탈 성형을 이용한 마그네슘 합금 판재의 성형변수에 관한 연구)

  • Park, J.G.;You, B.S.;Kim, Y.S.
    • Transactions of Materials Processing
    • /
    • v.17 no.6
    • /
    • pp.412-419
    • /
    • 2008
  • Using lightweight materials in vehicle manufacturing in order to reduce energy consumption is one of the most effective approach to decrease pollutant emissions. As a lightweight material, magnesium is increasingly employed in automotive parts. However, because of its hexagonal closed-packed(HCP) crystal structure, in which only the basal plane can move, the magnesium alloy sheets show low ductility and formability at room temperature. Thus the press forming of magnesium alloy sheets has been performed at elevated temperature within range of $200^{\circ}C{\sim}250^{\circ}C$. Here we try the possibility of sheet metal forming at room temperature by adopting incremental forming technique with rotating tool, which is so called as rotational-incremental sheet forming(RISF). In this rotational-incremental sheet forming the spindle tool rotates on the surface of the sheet metal and moves incrementally with small pitch to fit the sheet metal on the desired shape. There are various variables defining the formability of sheet metals in the incremental forming such as speed of spindle, pitch size, lubricants, etc. In this study, we clarified the effects of spindle speed and pitch size upon formability of magnesium alloy sheets at room temperature. In case of 0.2, 0.3 and 0.4mm of pitch size with hemispherical rotating tool of 6.0mm radius, the maximum temperature at contact area between rotating tool and sheet metal were $119.2^{\circ}C,\;130.8^{\circ}C,\;and\;177.3^{\circ}C$. Also in case of 300, 500, and 700rpm of spindle speed, the maximum temperature at the contact area were $109.7^{\circ}C,\;130.8^{\circ}C\;and\;189.8^{\circ}C$.