• 제목/요약/키워드: Vehicle License Plate Detection

검색결과 66건 처리시간 0.026초

CNN 기법을 이용한 자동차 번호판 인식법 연구 (A Study on the Vehicle License Plate Recognition Using Convolutional Neural Networks(CNNs))

  • 응쿤드와나요 세스;채규수
    • 미래기술융합논문지
    • /
    • 제2권4호
    • /
    • pp.7-11
    • /
    • 2023
  • 본 연구에서는 Convolutional Neural Networks(CNNs) 기법을 이용하여 차량 번호판을 인식하는 방법을 제시하였다. 차량 번호판은 일반적으로 차량의 공식 식별 목적으로 사용됩니다. 대부분의 일반적인 광학 문자 인식(OCR) 기술은 문서에 인쇄된 문자를 인식하는 데는 효과적이지만 번호판의 등록 번호는 식별할 수 없다. 그리고 번호판 감지에 대한 기존 접근 방식에서는 차량이 움직이지 않고 정지해 있어야 한다. 번호판 감지에 대한 이러한 문제를 해결하기 위해 CNN 기법을 활용한 번호판 인식 기법을 제안한다. 먼저 획득된 차량 번호판 이미지의 데이터베이스를 생성하고 CNN 기법을 활용하여 자동차 번호판 문자를 인식한다. 본 연구의 결과는 주차관리 시스템과 단속 카메라 등에 유용하게 활용 될 수 있다.

왜곡 보정과 지역 이진화를 이용한 RBFNNs 기반 차량 번호판 인식 시스템 (RBFNNs-based Recognition System of Vehicle License Plate Using Distortion Correction and Local Binarization)

  • 김선환;오성권
    • 전기학회논문지
    • /
    • 제65권9호
    • /
    • pp.1531-1540
    • /
    • 2016
  • In this paper, we propose vehicle license plate recognition system based on Radial Basis Function Neural Networks (RBFNNs) with the use of local binarization functions and canny edge algorithm. In order to detect the area of license plate and also recognize license plate numbers, binary images are generated by using local binarization methods, which consider local brightness, and canny edge detection. The generated binary images provide information related to the size and the position of license plate. Additionally, image warping is used to compensate the distortion of images obtained from the side. After extracting license plate numbers, the dimensionality of number images is reduced through Principal Component Analysis (PCA) and is used as input variables to RBFNNs. Particle Swarm Optimization (PSO) algorithm is used to optimize a number of essential parameters needed to improve the accuracy of RBFNNs. Those optimized parameters include the number of clusters and the fuzzification coefficient used in the FCM algorithm, and the orders of polynomial of networks. Image data sets are obtained by changing the distance between stationary vehicle and camera and then used to evaluate the performance of the proposed system.

YOLOv2 기반의 영상워핑을 이용한 강인한 오토바이 번호판 검출 및 인식 (Robust Motorbike License Plate Detection and Recognition using Image Warping based on YOLOv2)

  • 당순정;김응태
    • 방송공학회논문지
    • /
    • 제24권5호
    • /
    • pp.713-725
    • /
    • 2019
  • 번호판 자동인식(ALPR: Automatic License Plate Recognition)은 지능형 교통시스템 및 비디오 감시 시스템 등 많은 응용 분야에서 필요한 기술이다. 대부분의 연구는 자동차를 대상으로 번호판 감지 및 인식을 연구하였고, 오토바이를 대상으로 번호판 감지 및 인식은 매우 적은 편이다. 자동차의 경우 번호판이 차량의 전방 또는 후방 중앙에 위치하며 번호판의 뒷배경은 주로 단색으로 덜 복잡한 편이다. 그러나 오토바이의 경우 킥 스탠드를 이용하여 세우기 때문에 주차할 때 오토바이는 다양한 각도로 기울어져 있으므로 번호판의 글자 및 숫자 인식하는 과정이 훨씬 더 복잡하다. 본 논문에서는 다양한 각도로 주차된 오토바이 데이터세트에 대하여 번호판의 문자 인식 정확도를 높이기 위하여 2-스테이지 YOLOv2 알고리즘을 사용하여 오토바이 영역을 선 검출 후 번호판 영역을 검지한다. 인식률을 높이기 위해 앵커박스의 사이즈와 개수를 오토바이 특성에 맞추어 조절하였다. 그 후 기울어진 번호판을 검출한 후 영상 워핑 알고리즘을 적용하였다. 모의실험 결과, 기존 방식의 인식률이 47.74%에 비해 제안된 방식은 80.23%의 번호판의 인식률을 얻었다. 제안된 방법은 전체적으로 오토바이 번호판 특성에 맞는 앵커박스와 이미지 워핑을 통해서 다양한 기울기의 오토바이 번호판 문자 인식을 높일 수 있었다.

Real-Time Vehicle License Plate Detection Based on Background Subtraction and Cascade of Boosted Classifiers

  • Sarker, Md. Mostafa Kamal;Song, Moon Kyou
    • 한국통신학회논문지
    • /
    • 제39C권10호
    • /
    • pp.909-919
    • /
    • 2014
  • License plate (LP) detection is the most imperative part of an automatic LP recognition (LPR) system. Typical LPR contains two steps, namely LP detection (LPD) and character recognition. In this paper, we propose an efficient Vehicle-to-LP detection framework which combines with an adaptive GMM (Gaussian Mixture Model) and a cascade of boosted classifiers to make a faster vehicle LP detector. To develop a background model by using a GMM is possible in the circumstance of a fixed camera and extracts the motions using background subtraction. Firstly, an adaptive GMM is used to find the region of interest (ROI) on which motion detectors are running to detect the vehicle area as blobs ROIs. Secondly, a cascade of boosted classifiers is executed on the blobs ROIs to detect a LP. The experimental results on our test video with the resolution of $720{\times}576$ show that the LPD rate of the proposed system is 99.14% and the average computational time is approximately 42ms.

YOLOv5에서 가상 번호판 생성을 통한 차량 번호판 인식 시스템에 관한 연구 (A Study on Vehicle License Plate Recognition System through Fake License Plate Generator in YOLOv5)

  • 하상현;정석찬;전영준;장문석
    • 한국산업융합학회 논문집
    • /
    • 제24권6_2호
    • /
    • pp.699-706
    • /
    • 2021
  • Existing license plate recognition system is used as an optical character recognition method, but a method of using deep learning has been proposed in recent studies because it has problems with image quality and Korean misrecognition. This requires a lot of data collection, but the collection of license plates is not easy to collect due to the problem of the Personal Information Protection Act, and labeling work to designate the location of individual license plates is required, but it also requires a lot of time. Therefore, in this paper, to solve this problem, five types of license plates were created using a virtual Korean license plate generation program according to the notice of the Ministry of Land, Infrastructure and Transport. And the generated license plate is synthesized in the license plate part of collectable vehicle images to construct 10,147 learning data to be used in deep learning. The learning data classifies license plates, Korean, and numbers into individual classes and learn using YOLOv5. Since the proposed method recognizes letters and numbers individually, if the font does not change, it can be recognized even if the license plate standard changes or the number of characters increases. As a result of the experiment, an accuracy of 96.82% was obtained, and it can be applied not only to the learned license plate but also to new types of license plates such as new license plates and eco-friendly license plates.

YOLOv5에서 자동차 번호판 및 문자 정렬 알고리즘에 관한 연구 (A Study on Vehicle License Plates and Character Sorting Algorithms in YOLOv5)

  • 장문석;하상현;정석찬
    • 한국산업융합학회 논문집
    • /
    • 제24권5호
    • /
    • pp.555-562
    • /
    • 2021
  • In this paper, we propose a sorting method for extracting accurate license plate information, which is currently used in Korea, after detecting objects using YOLO. We propose sorting methods for the five types of vehicle license plates managed by the Ministry of Land, Infrastructure and Transport by classifying the plates with the number of lines, Korean characters, and numbers. The results of experiments with 5 license plates show that the proposed algorithm identifies all license plate types and information by focusing on the object with high reliability score in the result label file presented by YOLO and deleting unnecessary object information. The proposed method will be applicable to all systems that recognize license plates.

투영면 컨벌루션과 결정트리를 이용한 상태 적응적 차량번호판 인식 시스템 (Adaptive Vehicle License Plate Recognition System Using Projected Plane Convolution and Decision Tree Classifier)

  • 이응주;이수현;김성진
    • 한국멀티미디어학회논문지
    • /
    • 제8권11호
    • /
    • pp.1496-1509
    • /
    • 2005
  • 본 논문에서는 투영면 컨벌루션과 결정트리 분류기법을 사용하여 주변 환경이 복잡한 차량영상으로부터 실시간으로 번호판을 추출하고 인식하는 적응적 차량번호판 인식 시스템을 제안하였다. 일반적으로 고속도로 톨게이트와 주차장 출입구에서의 차량영상은 설치 카메라와 도로 환경에 따라 차량번호판의 크기, 각도변화, 주변잡음 등으로 매우 다양하므로 번호판 추출과 분할이 어렵다. 따라서 본 논문에서는 차량 영상을 획득한 후 번호판 후보영역을 검출하고 진입 위치 변화에 따라 번호판의 기울기와 크기를 자동으로 보정하여 인식하는 알고리즘을 제안하였다. 제안한 인식 방법은 차량의 에지누적 분포와 번호판의 일정한 명암값 변화 빈도수를 누적한 투영면 컨벌루션과 체인코드를 사용하여 크기와 기울기가 일정하지 않은 번호판으로부터 번호판영역을 정확히 추출하고, 적응적 이진화 기법을 이용하여 문자를 분할하였다. 본 논문에서 제안한 방법으로써 실험한 결과 복잡한 영상에서 전방 및 후방 차량영상으로부터 번호판 인식이 가능하였으며 각각 $98.8\%$$95.5\%$의 추출률과 분할된 문자영역에서 $97.3\%$$96\%$의 인식률 개선 결과를 나타내었다.

  • PDF

신, 구 차량 번호판 통합 인식에 관한 연구 (A Study on Recognition of Both of New & Old Types of Vehicle Plate)

  • 한건영;우영운;한수환
    • 한국정보통신학회논문지
    • /
    • 제13권10호
    • /
    • pp.1987-1996
    • /
    • 2009
  • 최근 들어 기존의 녹색 바탕의 차량 번호판에서, 흰색 바탕의 신 차량 번호판으로 교체되고 있다. 하지만, 아직 기존의 차량 번호판이 신 차량 번호판으로 전면 교체 되지 않아 두 번호판 모두 사용되고 있기 때문에 주차 관리 시스템, 속도위반, 신호 위반 등 무인 카메라를 이용한 시스템에서, 기존 차량 번호판과 신 차량 번호판 특징에 맞는 인식 시스템이 요구된다. 따라서 본 논문에서는 이러한 문제를 해결하기 위해 기존의 녹색 번호판과 흰색 번호판 모두를 추출하고 인식 할 수 있는 알고리즘에 관한 연구를 수행하였다. 다양한 환경 에서 획득한 차량 영상으로부터 번호판 영역을 추출하기 위하여 형태학적 특징을 이용하였고, 추출된 번호판 영역의 수평, 수직 히스토그램과 문자의 상대적 위치 정보를 이용하여, 문자를 분리하였다. 최종적으로, 분리된 문자를 인식하기 위해 주성분 분석법(PCA : Principal Component Analysis)과 선형 판별 분석법(LDA : Linear Discriminant Analysis)을 적용하여 인식 시스템을 구성하였다. 실험 결과, 불규칙한 조명 상태에서도 상대적으로 높은 추출률과 문자 인식률을 나타내었다.

왜곡 불변 차량 번호판 검출 및 인식 알고리즘 (Distortion Invariant Vehicle License Plate Extraction and Recognition Algorithm)

  • 김진호
    • 한국콘텐츠학회논문지
    • /
    • 제11권3호
    • /
    • pp.1-8
    • /
    • 2011
  • 최근 차량의 출입통제 및 주차관리 그리고 불법 차량의 단속 등 다양한 분야에서 차량 번호판 자동 인식 기술들이 활용되고 있다. 그러나 기울어지거나 햇빛 또는 조명 등의 영향을 받은 차량 영상에서는 번호판의 고유한 정보가 변형될 수 있다. 본 논문에서는 왜곡에 불변한 차량 번호판 검출 및 인식 알고리즘을 제안하였다. 먼저 DoG(Difference of Gaussian) 필터를 이용해서 번호판의 문자 획이 잘 보전된 이진영상을 생성하였다. 그리고 왜곡에 불변한 연속된 큰 숫자들의 위치를 찾고 그 정보를 이용해서 번호판영역을 검출하였다. 기하학적 왜곡 보정과 영상 개선 작업을 수행한 다음 신경망을 이용해서 번호판을 인식하였다. 제안한 알고리즘을 상용 LPR(License Plate Recognition) 시스템으로부터 획득한 6,200장의 차량 영상을 대상으로 시뮬레이션 한 결과 98.4%의 번호판 영상 인식률과 0.05초의 인식 속도를 얻을 수 있었다.

메쉬 및 세선화 기반 특징 벡터를 이용한 차량 번호판 인식 (A Vehicle License Plate Recognition Using the Feature Vectors based on Mesh and Thinning)

  • 박승현;조성원
    • 한국지능시스템학회논문지
    • /
    • 제21권6호
    • /
    • pp.705-711
    • /
    • 2011
  • 본 논문은 산업응용을 목표로 효과적인 차량 번호판 인식 알고리즘을 제안한다. 자동차 이미지를 얻은뒤 캐니 에지 추출(Canny Edge Detecting) 알고리즘을 이용하여 연결된 사각형을 찾아 번호판을 추출한다. 추출된 번호판의 색상 정보를 이용하여 흰색/녹색 번호판을 구분하고, 각 번호판을 OTSU 이진화와 주변 전경 픽셀 전파 알고리즘인 CLNF (CCLUF with NFPP)을 통해 문자를 제외한 잡음을 제거하고 레이블링하여 숫자 및 문자 영역을 분리한다. 분리된 문자 영역은 메쉬 방법 및 세선화 후 X-Y 투영 방법으로 특징 벡터를 추출한다. 추출된 특징 벡터는 역전파 신경망으로 미리 학습된 가중치 값과 비교되며, 최종 문자 인식을 수행한다. 제안된 차량 번호판 인식 알고리즘의 효과적 동작은 실험을 통해 확인하였다.