• Title/Summary/Keyword: Vehicle Interior Noise Reduction

Search Result 56, Processing Time 0.026 seconds

CAE-based DFSS Study for Road Noise Reduction (Road Noise 개선을 위한 CAE 기반 DFSS Study)

  • Kwon, Woo-Sung;Yoo, Bong-Jun;Kim, Byoung-Hoon;Kim, In-Dong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.735-741
    • /
    • 2011
  • In the early phase of vehicle development, CAE is conducted as tool for vehicle performance assessment. To maintain acceptable road noise performance, solution for reduced vehicle sensitivity is required. Chassis interface dynamic stiffness characteristics are key component to isolating vibration and noise of road from the vehicle interior. This research provide how to set up the optimized dynamic characteristics under noise effect through DFSS study. CAE-based DOE is performed to build prediction math model, CMS process involves DOE to achieve very fast run times while giving results very comparable. Minimized $95^{th}$ percentile of performance distribution is applied to minimize vehicle sensitivity and road noise levels variation during the optimization process. Finally, the results of optimization were reviewed for performance and robustness.

  • PDF

CAE-based DFSS Study for Road Noise Reduction (로드 노이즈 개선을 위한 전산응용해석 기반 DFSS 연구)

  • Kwon, Woo-Sung;Yoo, Bong-Jun;Kim, Byoung-Hoon;Kim, In-Dong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.7
    • /
    • pp.674-681
    • /
    • 2011
  • In the early phase of vehicle development, CAE is conducted as tool for vehicle performance assessment. To maintain acceptable road noise performance, solution for reduced vehicle sensitivity is required. Chassis interface dynamic stiffness characteristics are key component to isolating vibration and noise of road from the vehicle interior. This research provide how to set up the optimized dynamic characteristics under noise effect through DFSS study. CAE-based DOE is performed to build prediction math model, CMS process involves DOE to achieve very fast run times while giving results very comparable. Minimized 95th percentile of performance distribution is applied to minimize vehicle sensitivity and road noise levels variation during the optimization process. Finally, the results of optimization were reviewed for performance and robustness.

The Noise Effect of a Skirt on Rolling-stock (고속철도 차량의 스커트 장착에 의한 실내.외 소음 영향 분석)

  • Kim, Tae-Min;Kim, Jeung-Tae;Kim, Jung-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.499-504
    • /
    • 2012
  • The high-speed train enjoys widespread acceptance as environment-friendly means of medium- to long-distance transportation. The pursuit of higher speed and lighter weight in railroad vehicles has engendered higher noise level. In particular, the environmental noise places many restrictions in the operation of high-speed railroad vehicles. This research investigates the effect of installing a skirt onto a high-speed train bogie with the top speed of 400 km/hr and using High Speed EMU for the purpose of reducing the environmental noise. In order to analyze the effect of the interior noise and environmental noise due to installation of the skirt, sound level is calculated using the Ray method and Statical Energy Analysis method. The numerical calculation predicts a reduction of approximately 2 dB in the environmental noise level, but at the cost of increase of approximately 2.5 dB in the interior noise level of the vehicle.

  • PDF

The Analysis of NVH Characteristics of 4-Cylinerder Diesel Engine Block by Adapting Balancing Shaft (밸런스 샤프트 적용에 따른 4기통 디젤 엔진 블록의 방사소음 특성 개선 해석)

  • Choi, Cheon;Suh, Myung-Won;Kim, Young-Gin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.5
    • /
    • pp.129-137
    • /
    • 2000
  • The powertrain is an important factor for the interior and exterior noise behavior of the vehicle Thus, the noise vibration and harshness(NVH) behavior of an engine is becoming a major target of the powertrain development. This paper describes the analyses with the aim to reduce the vibration and noise of an advanced inline 4-cylinder diesel engine block by use of CAE methods. The characteristics of an engine block as a main excitation source of car interior noise is studied. Particularly, The effect of balance shaft to reduce the 2nd order engine excitation force is calculated by forced vibration and radiated noise analysis. The engine exitation forces are obtained under real operating conditions. It is shown that the reduction of vibration and noise level by adapting blancing shaft is well predicted and rediated noise is directly related to the surface velocity of engine block.

  • PDF

Prediction of Structure-Borne Noise for Floating Floor Using SEA (SEA 기법을 이용한 부유상구조의 구조기인 소음 예측)

  • Park, Hee-Jun;Woo, Kwan-Je
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.258-264
    • /
    • 2007
  • Floating floors, which are mainly used for reducing interior noise levels of railway vehicle, are known to be superior to single structure in respect to sound transmission loss and vibration reduction performances. The stiffness of isolator is one of the important design variables in floating floors. From modal tests, modal properties of underframe, top floor and isolators are derived. They are used as input parameters for predicting structure-borne noise using AUTOSEA.

  • PDF

A Study on Optimal Design of Panel Shape of a Body Structure for Reduction of Interior Noise

  • Kim, Hyo-Sig;Yoon, Seong-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.694-698
    • /
    • 2006
  • This paper presents an optimal design process using beads on a body panel to improve interior noise of a passenger vehicle. Except modification of structural members, it is difficult to find effective countermeasures that can work for the intermediate frequency range from 100 Hz to 300 Hz which lies between the booming and low medium frequency. In this study, it is a major goal to find additional counter-measures for this intermediate frequency range by performing optimal design of beads on body panels. The proposed method for design optimization consists of 4 sub-steps, that is, a) problem definition, b) cause analysis, c) countermeasure development and d) validation. The objective function is minimization of interior noise level. The major design variables are the geometrical shape of a bead and combination of beads on the critical panels. Sensitivity analysis and optimization are performed according to the predefined process for an optimal design. It is verified that the proposed design decreases the level of noise transfer function above 5 dB.

  • PDF

POSSIBILITIES TO IMPROVE TRANSIENT GEAR SHIFT NOISE (SHIFT CLONK) IN A PASSENGER CAR

  • BIERMANN J. W.;REITZ A.
    • International Journal of Automotive Technology
    • /
    • v.6 no.1
    • /
    • pp.23-28
    • /
    • 2005
  • The presented investigation of shift clonk in a vehicle with front-wheel drive shows how a detailed analysis of the complete acoustic system with respect to excitation, transfer and radiation foremost enables possibilities of noise reduction to be worked out. One of the most important basics for the shift clonk analysis was a synchronous measurement of both, torsional vibrations in the drive train on the excitation side as well as airborne and structure-borne noise signals on the transfer and radiation side. Thus, root causes could be identified and improvement measures of the internal shift system could be worked out. An analysis of the transfer paths by means of airborne and structure borne noise measurements made evident that the side shafts were responsible for the disturbing frequencies in the transfer paths. With the help of the FE-simulation it was possible to develop measures of structure optimisation for the side shaft system. The realisation of these measures clearly reduced the shift-noises in the vehicle interior.

An Experimental Study on the Vibration Reduction of the 4WD Vehicle by the Engine Mounting Conditions (엔진장착조건에 따른 4WD 자동차의 진동저감에 대한 실험적 연구)

  • Sa, J.S.;Kim, K.S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.2
    • /
    • pp.24-32
    • /
    • 1994
  • This paper is the experimental study on the vibration reduction of the 4WD vehicle through the change of the engine mounting conditions.(4 stroke diesel engine) The engine mounting conditions are changed to reduce the transmitted vibrations of the engine to the frame at the idle speed. Under the assumption that the Powertrain(Engine Transmission and Transfer Case) is a rigid body, the inertia properties of the powertrain are obtained by experimental modal analysis. And then the changed mounting conditions are studied by the decoupled vibration theory and analytical model of six degree of freedom. Though the mounting conditions are changed to improve the vibration isolation at idle speed, the vibration and the interior noise of the vehicle are reduced significantly at driving speed as well as idle speed. From the indirect endurance test of the front engine mounts, the changed mounting conditions are desirable to endurance as well as vibration reduction of the 4WD vehicle.

  • PDF

Derivation of Constraint Factors Affecting Passenger's In-Vehicle Activity of Urban Air Mobility's Personal Air Vehicle and Design Criteria According to the Level of Human Impact (도심항공모빌리티 비행체 PAV 탑승자 실내행위에 영향을 미치는 제약 요소 도출 및 인체 영향 수준에 따른 설계 기준)

  • Jin, Seok-Jun;Oh, Young-Hoon;Ju, Da Young
    • Science of Emotion and Sensibility
    • /
    • v.25 no.1
    • /
    • pp.3-20
    • /
    • 2022
  • Recently, prior to the commercialization of urban air mobility (UAM), the importance of R&D for air transportation-related industries in urban areas has significantly increased. To create a UAM environment, research is being conducted on personal air vehicles (PAVs). They are key means of air transportation, but research on the physical factors influencing their passengers is relatively insufficient. In particular, because the PAV is expected to be used as a living space for the passengers, research on the effects of the physical elements generated in the PAV on the human body is essential to design an interior space that supports the in-vehicle activities of the passengers. Therefore, the purpose of this study is to derive the constraint factors that affect the human body due to the air navigation characteristics of the PAV and to understand the impact of these constraint factors on the bodies of the passengers performing in-vehicle activities. The results of this study indicate that when the PAV was operated at less than 4,000 ft, which is the operating standard, the constraint factors were noise, vibration, and motion sickness caused by low-frequency motion. These constraint factors affect in-vehicle activity; thus, the in-vehicle activities that can be performed in a PAV were derived using autonomous cars, airplanes, and PAV concept cases. Furthermore, considering the impact of the constraint factors and their levels on the human body, recommended constraint factor criteria to support in-vehicle activities were established. To reduce the level of impact of the constraint factors on the human body and to support in-vehicle activity, the seat's shape and built-in functions of the seat (vibration reduction function, temperature control, LED lighting, etc.) and external noise reduction using a directional speaker for each individual seat were recommended. Moreover, it was suggested that interior materials for noise and vibration reduction should be used in the design of the interior space. The contributions of this study are the determination of the constraint factors affecting the in-vehicle PAV activity and the confirmation of the level of impact of the factors on the human body; in the future, these findings can be used as basic data for suitable PAV interior design.

A Study on the Reduction of Booming Noise of an Automobile (승용차의 부밍 소음 저감에 관한 연구)

  • 이상현;강상욱;최형길;이장무;성명호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.867-871
    • /
    • 1996
  • Recently many studies have been carried out to predict the characteristics of vehicle noise and to reduce the noise for enhancing the ride quality. In this study, the structural-acoustic coupling theory and the acoustic finite element theory were reviewed, and the structural acoustic coupling analysis was applied to an automobile. Because of nonuniformed lateral shape of a compartment cavity, the acoustic modes were calculated with 3-D finite element modeling. The structural modes were measured with the modal testing. Using the structural-acoustic cooling analysis, the modes which strongly coupled to the interior noise were identified and the boundary regions which could reduce noise level efficiently by structural modification were predicted.

  • PDF