• Title/Summary/Keyword: Vehicle Image Tracking

Search Result 154, Processing Time 0.034 seconds

A Study on the automatic vehicle monitoring system based on computer vision technology (컴퓨터 비전 기술을 기반으로 한 자동 차량 감시 시스템 연구)

  • Cheong, Ha-Young;Choi, Chong-Hwan;Choi, Young-Gyu;Kim, Hyon-Yul;Kim, Tae-Woo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.2
    • /
    • pp.133-140
    • /
    • 2017
  • In this paper, we has proposed an automatic vehicle monitoring system based on computer vision technology. The real-time display system has displayed a system that can be performed in automatic monitoring and control while meeting the essential requirements of ITS. Another advantage has that for a powerful vehicle tracking, the main obstacle handing system, which has the shadow tracking of moving objects. In order to obtain all kinds of information from the tracked vehicle image, the vehicle must be clearly displayed on the surveillance screen. Over time, it's necessary to precisely control the vehicle, and a three-dimensional model-based approach has been also necessary. In general, each type of vehicle has represented by the skeleton of the object or wire frame model, and the trajectory of the vehicle can be measured with high precision in a 3D-based manner even if the system has not running in real time. In this paper, we has applied on segmentation method to vehicle, background, and shadow. The validity of the low level vehicle control tracker was also detected through speed tracking of the speeding car. In conclusion, we intended to improve the improved tracking method in the tracking control system and to develop the highway monitoring and control system.

Lane Positioning in Highways Based on Road-sign Tracking by Kalman Filter (칼만필터 기반의 도로표지판 추적을 이용한 차량의 횡방향 위치인식)

  • Lee, Jaehong;Kim, Hakil
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.3
    • /
    • pp.50-59
    • /
    • 2014
  • This paper proposes a method of localization of vehicle especially the horizontal position for the purpose of recognizing the driving lane. Through tracking road signs, the relative position between the vehicle and the sign is calculated and the absolute position is obtained using the known information from the regulation for installation. The proposed method uses Kalman filter for road sign tracking and analyzes the motion using the pinhole camera model. In order to classify the road sign, ORB(Oriented fast and Rotated BRIEF) features from the input image and DB are matched. From the absolute position of the vehicle, the driving lane is recognized. The Experiments are performed on videos from the highway driving and the results shows that the proposed method is able to compensate the common GPS localization errors.

Tracking Moving Object using Hausdorff Distance (Hausdorff 거리를 이용한 이동물체 추적)

  • Kim, Tea-Sik;Lee, Ju-Shin
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.37 no.3
    • /
    • pp.79-87
    • /
    • 2000
  • In this paper, we propose a model based moving object tracking algorithm In dynamic scenes To adapt shape change of the moving object, the Hausdorff distance is applied as the measurement of similarity between model and image To reduce processing time, 2D logarithmic search method is applied for locate the position of moving object Experiments on a running vehicle and motorcycle, the result showed that the mean square error of real position and tracking result is 1150 and 1845; matching times are reduced average 1125times and 523 times than existing algorithm for vehicle image and motorcycle image, respectively It showed that the proposed algorithm could track the moving object accurately.

  • PDF

Real-time Vehicle Tracking Algorithm According to Eigenvector Centrality of Weighted Graph (가중치 그래프의 고유벡터 중심성에 따른 실시간 차량추적 알고리즘)

  • Kim, Seonhyeong;Kim, Sangwook
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.4
    • /
    • pp.517-524
    • /
    • 2020
  • Recently, many researches have been conducted to automatically recognize license plates of vehicles and use the analyzed information to manage stolen vehicles and track the vehicle. However, such a system must eventually be investigated by people through direct monitoring. Therefore, in this paper, the system of tracking a vehicle is implemented by sharing the information analyzed by the vehicle image among cameras registered in the IoT environment to minimize the human intervention. The distance between cameras is indicated by the node and the weight value of the weighted-graph, and the eigenvector centrality is used to select the camera to search. It demonstrates efficiency by comparing the time between analyzing data using weighted graph searching algorithm and analyzing all data stored in databse. Finally, the path of the vehicle is indicated on the map using parsed json data.

Comparison of Prediction Algorithms in Tracking System of Multiple Vehicles (다중차량 추적시스템의 예측 알고리듬 비교)

  • Kim, In-Haeng;Kim, Whoi-Yul
    • Journal of Advanced Navigation Technology
    • /
    • v.3 no.2
    • /
    • pp.156-166
    • /
    • 1999
  • In multi-vehicle tracking systems Kalman filter is generally used for tracking vehicles. Despite well known advantages of Kalman filter that presents optimality with constraints, it is difficult to track several vehicles in real time simultaneously due to a large number of computations. In this paper, we propose a multi-vehicle tracking system with an adaptive predictor that employs recursive least square algorithm which can be easily implemented for real time application on a transversal filter. The performance of the proposed tracking system is compared to one with Kalman filter using a synthetic sequential image generated by computer graphics and real sequential image taken at intersections. Simulation results show that the proposed tracking system can be applied to track vehicles in real sequential image at the rate of 30 frame/sec on a PC environments without any special hardwares.

  • PDF

Measurement of Spatial Traffic Information by Image Processing (영상처리를 이용한 공간 교통정보 측정)

  • 권영탁;소영성
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.2 no.2
    • /
    • pp.28-38
    • /
    • 2001
  • Traffic information can be broadly categorized into point information and spatial information. Point information can be obtained by chocking only the presence of vehicles at prespecified points(small area), whereas spatial information can be obtained by monitoring large area of traffic scene. To obtain spatial information by image processing, we need to track vehicles in the whole area of traffic scene. Image detector system based on global tracking consists of video input, vehicle detection, vehicle tracking, and traffic information measurement. For video input, conventional approaches used auto iris which is very poor in adaptation for sudden brightness change. Conventional methods for background generation do not yield good results in intersections with heave traffic and most of the early studies measure only point information. In this paper, we propose user-controlled iris method to remedy the deficiency of auto iris and design flame difference-based background generation method which performs far better in complicated intersections. We also propose measurement method for spatial traffic information such as interval volume/lime/velocity, queue length, and turning/forward traffic flow. We obtain measurement accuracy of 95%∼100% when applying above mentioned new methods.

  • PDF

Coordinates Tracking Algorithm Design (표적 좌표지향 알고리즘 설계)

  • 박주광
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.5 no.3
    • /
    • pp.62-76
    • /
    • 2002
  • This paper describes the design of a Coordinates Tracking algorithm for EOTS and its error analysis. EOTS stabilizes the image sensors such as FLIR, CCD TV camera, LRF/LD, and so on, tracks targets automatically, and provides navigation capability for vehicles. The Coordinates Tracking algorithm calculates the azimuth and the elevation angle of EOTS using the inertial navigation system and the attitude sensors of the vehicle, so that LOS designates the target coordinates which is generated by a Radar or an operator. In the error analysis in this paper, the unexpected behaviors of EOTS that is due to the time delay and deadbeat of the digital signals of the vehicle equipments are anticipated and the countermeasures are suggested. This algorithm is verified and the error analysis is confirmed through simulations. The application of this algorithm to EOTS will improve the operational capability by reducing the time which is required to find the target and support especially the flight in a night time flight and the poor weather condition.

Tracking of ground objects using image information for autonomous rotary unmanned aerial vehicles (자동 비행 소형 무인 회전익항공기의 영상정보를 이용한 지상 이동물체 추적 연구)

  • Kang, Tae-Hwa;Baek, Kwang-Yul;Mok, Sung-Hoon;Lee, Won-Suk;Lee, Dong-Jin;Lim, Seung-Han;Bang, Hyo-Choong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.5
    • /
    • pp.490-498
    • /
    • 2010
  • This paper presents an autonomous target tracking approach and technique for transmitting ground control station image periodically for an unmanned aerial vehicle using onboard gimbaled(pan-tilt) camera system. The miniature rotary UAV which was used in this study has a small, high-performance camera, improved target acquisition technique, and autonomous target tracking algorithm. Also in order to stabilize real-time image sequences, image stabilization algorithm was adopted. Finally the target tracking performance was verified through a real flight test.

Adaptive Background Generation for Vehicle Tracking System (차량 추적 시스템을 위한 적응적 배경 영상 생성)

  • 장승호;정정훈;신정호;박주용;백준기
    • Proceedings of the IEEK Conference
    • /
    • 2003.11a
    • /
    • pp.413-416
    • /
    • 2003
  • This paper proposes an adaptive background image generation method based on the frame difference for traffic monitoring. The performance of the conventional method is limited when there are more vehicles due to traffic Jam. To improve on this, we use frame differencing to separate vehicles from background in frame differencing, we adopt selective approach by using part of the image not considered as vehicle fer extraction of background. The proposed method generates background more efficiently than conventional methods even in the presence of heavy traffic.

  • PDF