• Title/Summary/Keyword: Vehicle Image Tracking

Search Result 154, Processing Time 0.024 seconds

Highway Incident Detection and Classification Algorithms using Multi-Channel CCTV (다채널 CCTV를 이용한 고속도로 돌발상황 검지 및 분류 알고리즘)

  • Jang, Hyeok;Hwang, Tae-Hyun;Yang, Hun-Jun;Jeong, Dong-Seok
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.2
    • /
    • pp.23-29
    • /
    • 2014
  • The advanced traffic management system of intelligent transport systems automates the related traffic tasks such as vehicle speed, traffic volume and traffic incidents through the improved infrastructures like high definition cameras, high-performance radar sensors. For the safety of road users, especially, the automated incident detection and secondary accident prevention system is required. Normally, CCTV based image object detection and radar based object detection is used in this system. In this paper, we proposed the algorithm for real time highway incident detection system using multi surveillance cameras to mosaic video and track accurately the moving object that taken from different angles by background modeling. We confirmed through experiments that the video detection can supplement the short-range shaded area and the long-range detection limit of radar. In addition, the video detection has better classification features in daytime detection excluding the bad weather condition.

Implementation and Evaluation of Multiple Target Algorithm for Automotive Radar Sensor (차량용 레이더 센서를 위한 다중 타겟 알고리즘의 구현과 평가)

  • Ryu, In-hwan;Won, In-Su;Kwon, Jang-Woo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.2
    • /
    • pp.105-115
    • /
    • 2017
  • Conventional traffic detection sensors such as loop detectors and image sensors are expensive to install and maintain and require different detection algorithms depending on the night and day and have a disadvantage that the detection rate varies widely depending on the weather. On the other hand, the millimeter-wave radar is not affected by bad weather and can obtain constant detection performance regardless of day or night. In addition, there is no need for blocking trafficl for installation and maintenance, and multiple vehicles can be detected at the same time. In this study, a multi-target detection algorithm for a radar sensor with this advantage was devised / implemented by applying a conventional single target detection algorithm. We performed the evaluation and the meaningful results were obtained.

Effect of Particle Loading Ratio on Fluid Characteristics and Particle Distribution in Particle-laden Coaxial Jet (입자부상 동축 분사기에서 입자로딩비가 유동 특성과 입자분포에 미치는 영향에 대한 연구)

  • Yoon, Jungsoo;Yoon, Youngbin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.3
    • /
    • pp.9-19
    • /
    • 2015
  • Experimental research on characteristics of particle-laden jet by using a coaxial injector was conducted in order to design fuel and oxidizer injectors of the supercavitation underwater vehicle. $1{\mu}m$ and $42{\mu}m$ particles was simultaneously injected to obtain particle and fluid velocity. Small particles($1{\mu}m$) and large particles represent fluid and fuel characteristics respectively. Small particles, which was processed using PIV algorithms, and one for the large particles processed using PTV algorithms. Fluid phase axial velocity increases according to particle loading ratio increases, and particles are located at the outside of the high vorticity region in a mixing layer of a coaxial injector.

GPR Development for Landmine Detection (지뢰탐지를 위한 GPR 시스템의 개발)

  • Sato, Motoyuki;Fujiwara, Jun;Feng, Xuan;Zhou, Zheng-Shu;Kobayashi, Takao
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.4
    • /
    • pp.270-279
    • /
    • 2005
  • Under the research project supported by Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT), we have conducted the development of GPR systems for landmine detection. Until 2005, we have finished development of two prototype GPR systems, namely ALIS (Advanced Landmine Imaging System) and SAR-GPR (Synthetic Aperture Radar-Ground Penetrating Radar). ALIS is a novel landmine detection sensor system combined with a metal detector and GPR. This is a hand-held equipment, which has a sensor position tracking system, and can visualize the sensor output in real time. In order to achieve the sensor tracking system, ALIS needs only one CCD camera attached on the sensor handle. The CCD image is superimposed with the GPR and metal detector signal, and the detection and identification of buried targets is quite easy and reliable. Field evaluation test of ALIS was conducted in December 2004 in Afghanistan, and we demonstrated that it can detect buried antipersonnel landmines, and can also discriminate metal fragments from landmines. SAR-GPR (Synthetic Aperture Radar-Ground Penetrating Radar) is a machine mounted sensor system composed of B GPR and a metal detector. The GPR employs an array antenna for advanced signal processing for better subsurface imaging. SAR-GPR combined with synthetic aperture radar algorithm, can suppress clutter and can image buried objects in strongly inhomogeneous material. SAR-GPR is a stepped frequency radar system, whose RF component is a newly developed compact vector network analyzers. The size of the system is 30cm x 30cm x 30 cm, composed from six Vivaldi antennas and three vector network analyzers. The weight of the system is 17 kg, and it can be mounted on a robotic arm on a small unmanned vehicle. The field test of this system was carried out in March 2005 in Japan.