Kim, Kun Hong;Moon, Chang Bae;Kim, Byeong Man;Oh, Duk Hwan
Journal of Korea Society of Industrial Information Systems
/
v.23
no.1
/
pp.87-96
/
2018
In this paper, we propose a method to determine whether there is a defect by using the similarity between ROIs (Region of Interest) of the standard image and ROIs of the image which is corrected in position and rotation after capturing the vehicle headlight. The degree of similarity is determined by the template matching based on the histogram of image, which is a some modification of the method provided by OpenCV where template matching is performed on the raw image not the histogram. The proposed method is compared with the basic method of OpenCV for performance analysis. As a result of the analysis, it was found that the proposed method showed better performance than the OpenCV method, showing the accuracy close to 100%.
Journal of Institute of Control, Robotics and Systems
/
v.20
no.9
/
pp.950-956
/
2014
In this paper, the real-time detection method of a DDP (Driving Direction Point) is proposed for an unmanned vehicle to safely follow the center of the road. Since the DDP is defined as a center point between two lanes, the lane is first detected using a web camera. For robust detection of the lane, the binary thresholding and the labeling methods are applied to the color camera image as image preprocessing. From the preprocessed image, the lane is detected, taking the intrinsic characteristics of the lane such as width into consideration. If both lanes are detected, the DDP can be directly obtained from the preprocessed image. However, if one lane is detected, the DDP is obtained from the inverse perspective image to guarantee reliability. To verify the proposed method, several experiments to detect the DDPs are carried out using a 4 wheeled vehicle ERP-42 with a web camera.
Journal of Institute of Control, Robotics and Systems
/
v.20
no.7
/
pp.718-723
/
2014
In this paper, we developed the inspection system of electric vehicle battery plate using image processing. Four cameras are used for acquiring the principal parts of the plate, and several steps of image processing for extracting significant dimensions of the plate such as widths and lengths. As a preceding step, calibration of four cameras is carried for compensating distorted images using dot-arrayed sheet. Coordinate systems for four cameras are defined where one coordinate system is assigned to the reference coordinate system to which the others are relatively described. Line information of the edge in the windowed image is extracted using elaborate edge-detection algorithm, and finally the intersection points between lines are extracted to calculate widths and lengths of the plate from which the error status of the battery plate is decided.
Journal of information and communication convergence engineering
/
v.9
no.4
/
pp.447-451
/
2011
Recently, various in-vehicle networks have been developed respectively in order to accomplish their own purposes such as CAN and MOST. Especially, the MOST network is usually adapted to provide entertainment service. The car navigation system is also widely used for guiding driving paths to driver. The position for the navigation system is usually acquired by GPS technology. However, the GPS technique has two serious problems. The first is unavailability in urban canyons. The second is inherent positional error rate. The problems have been studied in many literatures. However, the second still leads to incorrect locational information in some area, especially parallel roads. This paper proposes a performance tuning method of image matching algorithm for the car navigation system. The method utilizes images obtained from in-vehicle MOST network and a real-time image matching algorithm which determines the direction of moving vehicle in parallel section of road. In order to accuracy improvement of image matching algorithm, three conditions are applied. The experimental tests show that the proposed system increases the accuracy.
The most typical method to generate traffic information is installing vehicle detectors and collecting various traffic variables. The information collection accuracy of a vehicle detector affects the reliability of the generated traffic information. The most universal vehicle detector is an image detector. This study installed a magnetic detector in the same position as an image detector and evaluated the accuracy of traffic volume and speed data depending on a variety of environment. Based on the evaluation, more errors occurred as the image detector was placed farther from the camera, whereas more errors were found to occur during the night rather than the day. Although rainfall did not affect the collection of traffic volume, it negatively affected speed data collection. Therefore, an analysis of the camera's view angle and its optimization depending on the camera installation position and height are required to enhance the currently operated image detector performance. It is judged that a separate performance evaluation criterion should be prepared in a bad weather environment.
Kim, Deug-Bong;Heo, Jun-Hyeog;Kim, Ga-Lam;Seo, Chang-Beom;Lee, Woo-Jun
Journal of the Korean Society of Marine Environment & Safety
/
v.27
no.7
/
pp.1044-1050
/
2021
After the occurrence of several passenger ship accidents in Korea, various systems are being developed for passenger ship safety management. A total of 162 passenger ships operate along the coast of Korea, of which 105 (65 %) are car-ferries with open vehicle decks. The car-ferry has a navigation pattern that passes through 2 to 4 islands. Safety inspections at the departure point(home port) are carried out by the crew, the operation supervisor of the operation management office, and the maritime safety supervisor. In some cases, self-inspections are carried out for safety inspections at layovers. As with any system, there are institutional and practical limitations. To this end, this study was conducted to suggest a method of detecting a vehicle using image processing and linking it to the calculations for ship stability. For vehicle detection, a method using a difference image and one using machine learning were used. However, a limitation was observed in these methods that the vehicle could not be identified due to strong background lighting from the pier and the ship in the cases where the camera was backlit such as during sunset or at night. It appears necessary to secure sufficient image data and upgrade the program for stable image processing.
International Journal of Fuzzy Logic and Intelligent Systems
/
v.16
no.1
/
pp.13-20
/
2016
In this study, we propose a method to regulate parking violations using computer vision technology. A still color image of the parked vehicle under question is obtained by a camera mounted on enforcement vehicles. The acquired image is preprocessed through a morphological algorithm and binarized. The vehicle's shadows are detected from the binarized image, and lanes are identified using the information from the yellow parking lines that are drawn on the load. Whether parking is illegal is determined by the conformity of the lanes and the vehicle's shadow.
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.38
no.3
/
pp.269-279
/
2020
Traffic estimation mainly involves surveying equipment such as automatic vehicle classification, vehicle detection system, toll collection system, and personnel surveys through CCTV (Closed Circuit TeleVision), but this requires a lot of manpower and cost. In this study, we proposed a method of estimating traffic volume using deep learning and stereo CCTV to overcome the limitation of not detecting the entire vehicle in case of single CCTV. COCO (Common Objects in Context) dataset was used to train deep learning models to detect vehicles, and each vehicle was detected in left and right CCTV images in real time. Then, the vehicle that could not be detected from each image was additionally detected by using affine transformation to improve the accuracy of traffic volume. Experiments were conducted separately for the normal road environment and the case of weather conditions with fog. In the normal road environment, vehicle detection improved by 6.75% and 5.92% in left and right images, respectively, than in a single CCTV image. In addition, in the foggy road environment, vehicle detection was improved by 10.79% and 12.88% in the left and right images, respectively.
The autonomous vehicles are being developed and operated widely because of the advantages of reducing the traffic accident and saving time and cost for driving. The vehicle localization is an essential component for autonomous vehicle operation. In this paper, localization algorithm based on sensor fusion is developed for cost-effective localization using in-vehicle sensors, GNSS, an image sensor and reference images that made in advance. Information of the reference images can overcome the limitation of the low positioning accuracy that occurs when only the sensor information is used. And it also can acquire estimated result of stable position even if the car is located in the satellite signal blockage area. The particle filter is used for sensor fusion that can reflect various probability density distributions of individual sensors. For evaluating the performance of the algorithm, a data acquisition system was built and the driving data and the reference image data were acquired. Finally, we can verify that the vehicle positioning can be performed with an accuracy of about 0.7 m when the route image and the reference image information are integrated with the route path having a relatively large error by the satellite sensor.
This paper proposes a classification method using the Convolutional Neural Network(CNN) which can obtain the type of trucks from the input image without the feature extraction step. To automatically classify vehicle images according to the type of truck cargo box, the top view images of the vehicle are used as input image and we design the structure of the CNN suitable for the input images. Learning images and correct output results is generated and the weights of neural network are obtained through the learning process. The actual image is input to the CNN and the output of the CNN is calculated. The classification performance is evaluated through comparison CNN output with actual vehicle types. Experimental results show that vehicle images could be classified with more than 90 percent accuracy according to the type of cargo box and this method can be used for pre-classification for inspecting loading defect.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.