• Title/Summary/Keyword: Vehicle Gateway Algorithm

Search Result 12, Processing Time 0.014 seconds

THERA: Two-level Hierarchical Hybrid Road-Aware Routing for Vehicular Networks

  • Abbas, Muhammad Tahir;SONG, Wang-Cheol
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.7
    • /
    • pp.3369-3385
    • /
    • 2019
  • There are various research challenges in vehicular ad hoc networks (VANETs) that need to be focused until an extensive deployment of it becomes conceivable. Design and development of a scalable routing algorithm for VANETs is one of the critical issue due to frequent path disruptions caused by the vehicle's mobility. This study aims to provide a novel road-aware routing protocol for vehicular networks named as Two-level hierarchical Hybrid Road-Aware (THERA) routing for vehicular ad hoc networks. The proposed protocol is designed explicitly for inter-vehicle communication. In THERA, roads are distributed into non-overlapping road segments to reduce the routing overhead. Unlike other protocols, discovery process does not flood the network with packet broadcasts. Instead, THERA uses the concept of Gateway Vehicles (GV) for the discovery process. In addition, a route between source and destination is flexible to changing topology, as THERA only requires road segment ID and destination ID for the communication. Furthermore, Road-Aware routing reduces the traffic congestion, bypasses the single point of failure, and facilitates the network management. Finally yet importantly, this paper also proposes a probabilistical model to estimate a path duration for each road segment using the highway mobility model. The flexibility of the proposed protocol is evaluated by performing extensive simulations in NS3. We have used SUMO simulator to generate real time vehicular traffic on the roads of Gangnam, South Korea. Comparative analysis of the results confirm that routing overhead for maintaining the network topology is smaller than few previously proposed routing algorithms.

Efficient Broadcasting Scheme of Emergency Message based on VANET and IP Gateway (VANET과 IP 게이트웨이에 기반한 긴급메시지의 효율적 방송 방법)

  • Kim, Dongwon;Park, Mi-Ryong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.4
    • /
    • pp.31-40
    • /
    • 2016
  • In vehicular ad-hoc networks (VANETs), vehicles sense information on emergency incidents (e.g., accidents, unexpected road conditions, etc.) and propagate this information to following vehicles and a server to share the information. However, this process of emergency message propagation is based on multiple broadcast messages and can lead to broadcast storms. To address this issue, in this work, we use a novel approach to detect the vehicles that are farthest away but within communication range of the transmitting vehicle. Specifically, we discuss a signal-to-noise ratio (SNR)-based linear back-off (SLB) scheme where vehicles implicitly detect their relative locations to the transmitter with respect to the SNR of the received packets. Once the relative locations are detected, nodes that are farther away will set a relatively shorter back-off to prioritize its forwarding process so that other vehicles can suppress their transmissions based on packet overhearing. We evaluate SLB using a realistic simulation environment which consists of a NS-3 VANET simulation environment, a software-based WiFi-IP gateway, and an ITS server operating on a separate machine. Comparisons with other broadcasting-based schemes indicate that SLB successfully propagates emergency messages with latencies and hop counts that is close to the experimental optimal while reducing the number of transmissions by as much as 1/20.