• 제목/요약/키워드: Vehicle Engine Control

검색결과 409건 처리시간 0.024초

토크 벡터링을 적용한 전기차의 선회 성능 평가에 관한 연구 (A Study of Torque Vectoring Application in Electric Vehicle for Driving Stability Performance Evaluation)

  • 이종현;이경하;김일호;정덕우;허승진
    • 한국자동차공학회논문집
    • /
    • 제22권3호
    • /
    • pp.250-256
    • /
    • 2014
  • EV(Electric Vehicle) has many benefits such as prevention of global warming and so on. But due to driving source changing from combustion engine to battery and e-motor, new R&D difficulties have arisen which changing of desired vehicle performance and multidisciplinary design constraints by means of strong coupled multi-physics domain problems. Additionally, dynamics performances of EV becomes more important due to increasing customer's demands and expectations for EV in compare with internal combustion engine vehicle. In this paper suggests model based development platform of EV through integrated simulation environment for improving analyse & design accuracy in order to solve multi-physics problem. This simulation environment is integrated by three following specialized simulation tools IPG CarMaker, AVL Cruise, DYMOLA that adapted to each purpose. Furthermore, control algorithm of TV(Torque Vectoring) system is developed using independent driven e-motor at rear wheels for improving handling performance of EV. TV control algorithm and its improved vehicle performances are evaluated by numerical simulation from standard test methods.

무인 멀티콥터에 적용된 60마력급 직립형 가솔린 엔진의 성능 분석 (A Performance Analysis of 60 Horsepower Vertical Mounted Gasoline Engine Applied to Multi-copter of Unmanned Aircraft Vehicle)

  • 김륜경;고경완;권성기;박계춘
    • 한국수소및신에너지학회논문집
    • /
    • 제34권6호
    • /
    • pp.758-766
    • /
    • 2023
  • Multi-copter of unmanned aerial vehicle (UAV) was initially developed as strategic technology in the only military field, but it is developing into an industrial field with a wide range of applications in the civil sector based on the development and convergence of aviation technology and information and communication technology. Currently, the degree of utilization of multi-copter is increasing in various industries for the purpose of performing classic tactical missions, logistics transportation, farm management, internet supply, video filming, weather management, life-saving, etc, and active technology development responding to market demand. Existing commercial multi-copter mainly use an electric energy propulsion system consisting of an electric battery and a brushless direct current (BLDC) motor. It is the limitations for usage in the flying time (up to 20 minutes) and payload (less than 20 kg). this study aims to overcome these limitations and expand the commercialization of engine-powered multi-copter of UAV in various industries in the futures.

2.0 리터급 LPG 하이브리드 엔진 및 차량의 배출가스 및 연비성능 비교에 관한 연구 (A Study on the Comparison of Emissions and Fuel Efficiency Performance of 2.0 Liter LPG Hybrid Engine and Vehicle)

  • 권석주;구본석;강재훈;김강면;오세두;서영호
    • 한국분무공학회지
    • /
    • 제28권4호
    • /
    • pp.191-197
    • /
    • 2023
  • LPG direct injection (LPDi) technology is a method of improving the weaknesses of existing LPG vehicles by directly injection into the combustion chamber. This study was conducted on the comparison of emissions and fuel efficiency performance of the engine and vehicle by applying LPDi technology. The LPDi hybrid engine's maximum output and maximum torque were measured at an equivalent level of less than 1% compared to conventional gasoline fuel. The fuel amount was corrected using the LCU controller, and the THC, CO, and NOx emissions were reduced to 90% in the operating range of the three-way catalyst through air-fuel ratio control. The analysis of THC+NOx and CO emissions in FTP-75 (CVS-75) driving mode satisfied the US LEV III SULEV30 regulation.

교류발전기 충전 제어에 따른 차량연비 개선 효과 (Effect of Alternator Control on Vehicle Fuel Economy)

  • 조근진;위효성;이종화;박진일;박경석
    • 한국자동차공학회논문집
    • /
    • 제17권2호
    • /
    • pp.20-25
    • /
    • 2009
  • For many years there has been a trend to increased electrical energy consumption in cars caused by the replacement of mechanical parts by electronic or mechanical devices as well as the introduction of new electronic features. Whereas the number of electrical consumers continues to increase, the battery is still the only passive power source available. Because of this reason, needs for driving power of the engine accessories such as alternator system have increased. Usually, conventional alternator system is directly driven by the crankshaft of engine with belt. Since this increase bring about additional fuel economy. To improve this system automobile makers develops new controled alternator system. This paper focuses on fuel economy improvement according to control of alternator. In this paper, researches are performed on effect of type of Alternator system on fuel economy by experiment. And it is also calculated the effect on vehicle fuel economy using computer simulation with AVL cruise software. As a result, 0.64% of vehicle fuel economy improvement can be achieved in a vehicle with controled Alternator system compared to a vehicle with conventional Alternator system in NEDC mode.

Cylinder Deactivation 엔진의 동작모드 전환 시 과도상태 공연비 제어 (Transient Air-fuel Ratio Control of the Cylinder Deactivation Engine during Mode Transition)

  • 권민수;이민광;김준수;선우명호
    • 한국자동차공학회논문집
    • /
    • 제19권2호
    • /
    • pp.26-34
    • /
    • 2011
  • Hybrid powertrain systems have been developed to improve the fuel efficiency of internal combustion engines. In the case of a parallel hybrid powertrain system, an engine and a motor are directly coupled. Because of the hardware configuration of the parallel hybrid system, friction and the pumping losses of internal combustion engines always exists. Such losses are the primary factors that result in the deterioration of fuel efficiency in the parallel-type hybrid powertrain system. In particular, the engine operates as a power consumption device during the fuel-cut condition. In order to improve the fuel efficiency for the parallel-type hybrid system, cylinder deactivation (CDA) technology was developed. Cylinder deactivation technology can improve fuel efficiency by reducing pumping losses during the fuel-cut driving condition. In a CDA engine, there are two operating modes: a CDA mode and an SI mode according to the vehicle operating condition. However, during the mode change from CDA to SI, a serious fluctuation of the air-fuel ratio can occur without adequate control. In this study, an air-fuel ratio control algorithm during the mode transition from CDA to SI was proposed. The control algorithm was developed based on the mean value CDA engine model. Finally, the performance of the control algorithm was validated by various engine experiments.

Development of DC Controller for Battery Control for Elevator Car

  • Lee, Sang-Hyun;Kim, Sangbum
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제13권2호
    • /
    • pp.103-111
    • /
    • 2021
  • Among transport vehicles, Special Vehicles (SVs) are seriously exposed to energy and environmental problems. In particular, elevator cars used when moving objects in high-rise buildings increase the engine's rotational speed (radian per second: RPM). At this time, when the vehicle accelerates rapidly while idling, energy consumption increases explosively along with the engine speed, and a lot of soot is generated. The purpose of this paper is to develop a bi-directional DC-DC converter for control of vehicle power and secondary battery used in an elevated ladder vehicle (EC) used in the moving industry. As a result of this paper, the performance test of the converter was conducted. The charging/discharging state of the converter was simulated using DC power supply and DC electronic load, and a performance experiment was conducted to measure the input/output power of the converter through a power meter. Through this experimental result, it was confirmed that the efficiency was more than 92% in Buck mode and Boost mode at maximum 1.2kW output.

플라이휘일 하이브리드 차량의 다경로 동력전달장치 연구 (A Study on Multi Pass Transmission System for a Flywheel Hybrid Vehicle)

  • 송한림;김현수
    • 한국자동차공학회논문집
    • /
    • 제5권3호
    • /
    • pp.106-116
    • /
    • 1997
  • In this paper, using MATLAB SIMULINK, a generalized design methodology was suggested for multi pass transmission(MPT) by classifying the vehicle power train as prime mover, MPT and vehicle dynamics. This approach enables a designer to investigate the influence of each transmission component by simple combination of system components without changes of overall program. Using the design methodology, a MPT consisting of CVT, 2, clutches and reduction gears was designed for a braking energy regenerative flywheel hybrid vehicle. The CVT is essential in order to connect the engine and flywheel speed with the vehicle speed. For the purpose of smooth clutch operation, control algorithm was suggested by introducing dead zone for the clutch engagement. Using the SIMULINK model, performance of the flywheel hybrid vehicle with MPT was investigated. It was observed from the simulation results that the MPT vehicle showed better fuel economy, 47% than that of AT vehicle, 27% than that of CVT vehicle for ECE-15 driving cycle. Especially destinct fuel efficiency improvement was obtained for city driving cycle requiring more frequent stop and start.

  • PDF

Self-Diagnostic Signal Monitoring System of KWP2000 Vehicle ECU using Bluetooth

  • Choi, Kwang-Hun;Lee, Hyun-Ho;Lee, Young-Choon;Kwon, Tae-Kyu;Lee, Seong-Cheol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.132-137
    • /
    • 2004
  • On-Board Diagnostic(OBD) systems are in most cars and light trucks on the load today. During the 1970's and early 1980's manufacturers started using electronic means to control engine functions and diagnose engine problems. The CARB's diagnostic requirements to meet EPA emission standards have been designated as OBD with a goal of monitoring all of the emissions-related components, as well as the chassis, body, accessory devices and the diagnostic control network of the vehicle for proper operation. In this paper, we present a remote measurement system for the wireless monitoring of diagnosis signal and sensors output signals of ECU adopted KWP2000, united the OBD communication protocol, on OBD-compliant vehicle using the wirless communication technique of Bluetooth. In order to measure the ECU signals, the interface circuit is designed to communicate ECU and designed terminal wirelessly according to the ISO, SAE regulation of communication protocol standard. A microprocessor S3C3410X is used for communicating ECU signals. The embedded system's software is programmed to measure the ECU signals using the ARM compiler and ANCI C based on MicroC/OS kernel to communicate between bluetooth modules using bluetooth stack. The diagnostic system is developed using Visual C++ MFC and protocol stack of bluetooth for Windows environment. The self-diagnosis and sensor output signals of ECU is able to monitor using PC with bluetooth board connected in serial port of PC. The algorithms for measuring the ECU sensor output and self-diagnostic signals are verified to monitor ECU state. At the same time, the information to fix the vehicle's problem can be shown on the developed monitoring software. The possibility for remote measurement of self-diagnosis and sensor signals of ECU adopted KWP2000 in embedded system verified through the developed systems and algorithms.

  • PDF

The Effect of Fuel Injection Timing on the Combustion and Emission Characteristics of a Natural Gas Fueled Engine at Part Loads

  • Cho, Haeng-Muk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권7호
    • /
    • pp.1013-1018
    • /
    • 2008
  • For a sequential port fuel injection natural gas engine, its combustion and emission characteristics at low loads are crucial to meet light duty vehicle emission regulations. Fuel injection timing is an important parameter related to the mixture formation in the cylinder. Its effect on the combustion and emission characteristics of a natural gas engine were investigated at 0.2 MPa brake mean effective pressure (BMEP)/2000 rpm and 0.26 MPa BMEP/1500 rpm. The results show that early fuel injection timing is beneficial to the reduction of the coefficient of variation (COV) of indicated mean effective pressure (IMEP) under lean burn conditions and to extending the lean burn limits at the given loads. When relative air/fuel ratio is over 1.3, fuel injection timing has a relatively large effect on engine.out emissions. The levels of NOx emissions are more sensitive to the fuel injection timing at 0.26 MPa BMEP/1500 rpm. An early fuel injection timing under lean burn conditions can be used to control engine out NOx emissions.

개별 부하 시스템의 에너지 절감을 포함한 선박 전력 에너지 관리 시스템 개발 (Development of Power Energy Management System for Ships including Energy Saving of Separated Load Systems)

  • 강영민;오진석
    • 한국정보통신학회논문지
    • /
    • 제22권1호
    • /
    • pp.131-139
    • /
    • 2018
  • 최근 4차 혁명과 연계하여 많은 선박 분야의 연구들이 수행되고 있으며, 그 중 하나로 에너지 관리시스템 (EMS: Energy Management System)이 관심을 받고 있다. 에너지 관리시스템은 선박의 에너지를 관리하기 위한 시스템을 통칭하며, 다양한 시스템을 포함한다. 본 논문에서는 선박에서의 에너지 절감 분야를 분석하고, 기관실에서 에너지 절감이 가능한 개별 부하 제어 시스템을 포함한 선박 전력 에너지 관리 시스템을 제안한다. 제안하는 EMS는 PCS (Pump Control System), ERFCS (Engine Room Fan Control System), LCS (Load Control System), HVACS (Heating, Ventilation, Air conditioning Control System)의 개별 부하 제어 시스템을 포함한다. 1차적으로, 제안하는 EMS는 기관실의 개별적인 부하 시스템에서 에너지를 절감한다. 2차적으로는 통합 모니터링 및 제어 시스템을 통해 발전 시스템과 전력 부하 시스템을 적절히 제어하여 에너지를 절감한다.