• Title/Summary/Keyword: Vehicle Dynamics Control(VDC)

Search Result 15, Processing Time 0.021 seconds

VEHICLE DYNAMIC CONTROL ALGORITHM AND ITS IMPLEMENTATION ON CONTROL PROTOTYPING SYSTEM

  • Zhang, Y.;Yin, C.;Zhang, J.
    • International Journal of Automotive Technology
    • /
    • v.7 no.2
    • /
    • pp.167-172
    • /
    • 2006
  • A design of controller for vehicle dynamic control(VDC) and its implementation on the real vehicle were introduced. The controller has been designed using a three-degrees-of-freedom(3DOF) yaw plane vehicle, and the control algorithm was implemented on the vehicle by control prototyping system dSPACE. A hybrid control algorithm, which makes full use of the advantages of robust and fuzzy control, was adopted in the control system. Field test results show that the performance of the vehicle handling dynamics with hybrid controller is improved obviously compared to that without VDC and with simple robust controller on skiddy roads(friction coefficients lower than 0.3).

A Development of New Vehicle Model for Yaw Rate Estimation (요각속도 추정을 위한 새로운 차량 모델의 개발)

  • Bae, Sang-Woo;Shin, Moo-Hyun;Kim, Dae-Kyun;Lee, Jang-Moo;Lee, Jae-Hyung;Tak, Tae-Oh
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.565-570
    • /
    • 2001
  • Vehicle dynamics control (VDC) system requires more information on driving conditions compared with ABS and/or TCS. In order to develop the VDC system, tire slip angles, vehicle side-slip angle, and vehicle lateral velocity as well as road friction coefficient are needed. Since there are not any cheap and reliable sensors, recent researches on parameter estimation have given rise to a number of parameter estimation techniques. This paper presents new vehicle model to estimate vehicle's yaw rate. This model is improved from the conventional 2 degrees of freedom vehicle model, so-called bicycle model, taking nonlinear effects into account. These nonlinear effects are: (i) tyre nonlinearity; (ii) lateral load transfer during cornering; (iii) variable gear ratio with respect to vehicle velocity. Estimation results are validated with the experimental results.

  • PDF

A Study on the Development of a Real Time Simulator for the ESP (Electronic Stability Program) (전자식 차체 자세 제어 장치를 위한 실시간 시뮬레이터 개발에 관한 연구)

  • Kim, Tae Un;Cheon, Seyoung;Yang, Soon Young
    • Journal of Drive and Control
    • /
    • v.16 no.4
    • /
    • pp.48-55
    • /
    • 2019
  • The Electronic Stability Program (ESP), a system that improves vehicle safety, also known as YMC (Yaw Motion Controller) or VDC (Vehicle Dynamics Control), is a system that operates in unstable or sudden driving and braking situations. Developing conditions such as unstable or sudden driving and braking situations in a vehicle are very dangerous unless you are an experienced professional driver. Additionally, many repetitive tests are required to collect reliable data, and there are many variables to consider such as changes in the weather, road surface, and tire condition. To overcome this problem, in this paper, hardware and control software such as the ESP controller, vehicle engine, ABS, and TCS module, composed of three control zones, are modeled using MATLAB/SIMULINK, and the vehicle, climate, and road surface. Various environmental variables such as the driving course were modeled and studied for the real-time ESP real-time simulator that can be repeatedly tested under the same conditions.

Development of Active Yaw Moment Control Algorithm Based on Brake Slip Control (브레이크 슬립 제어에 기초한 차량 능동 요모멘트 제어 알고리즘의 개발)

  • Youn, Weon-Young;Song, Jae-Bok
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.487-492
    • /
    • 2000
  • Yaw moment control algorithm for improving stability of a vehicle in cornering is presented in this paper. A change of the yaw moment according to an increment in brake ship at each wheel is examined and reflected in the control algorithm. This control algorithm computes the target yaw velocity as the vehicle motion desired by the driver for directional stability control in cornering and it makes the actual yaw velocity follow the target one. The yaw moment control was achieved by brake slip control and simple brake slip control logic was introduced in this paper.

  • PDF

Development of Hardware-in-the-Loop Simulator for EHB Systems (EHB 시스템을 위한 Hardware-in-the-Loop 시뮬레이터 개발)

  • 허승진;박기홍;이해철;김태우;김형수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1139-1143
    • /
    • 2003
  • HILS(Hardware-In-the-Loop Simulation) is a scheme that incorporates hardware components of primary concern in the numerical simulation environment. Due to its advantages over actual vehicle test and pure simulation, HILS is being widely accepted in automotive industries as test benches for vehicle control units. Developed in this study is a HILS system for EHB(Electro-Hydraulic Brake) systems that include a high pressure generator and a valve control system that independently modulates the brake pressures at four wheels. An EHB control logic was tested in the HILS system. Test results under various driving conditions are presented and compared with the VDC logic.

  • PDF