• Title/Summary/Keyword: Vehicle Driving

Search Result 2,662, Processing Time 0.032 seconds

Implementation of HIL Method to Analyze Driving Characteristic of Hybrid Electric Vehicle (하이브리드 자동차 구동 특성 분석을 위한 HIL 방식의 구현)

  • Oh, Sung Chul
    • The Journal of Korean Institute for Practical Engineering Education
    • /
    • v.3 no.2
    • /
    • pp.100-105
    • /
    • 2011
  • By adopting HIL(Hardware-in-the-Loop), component characteristics in vehicle environment can be obtained without implementing component in the vehicle. In this paper, when specific motor is adopted as traction motor in hybrid electric vehicle HIL implementation procedures are explained. In order to implement HIL method motor testing. vehicle performance simulator and load characteristic are explained. Vehicle controller used in simulator is directly uploaded in real controller. Especially as a load dynamometer actively controlled motor system is used without connecting conventional mechanical inertia. Motor characteristics are obtained using HIL implementation when test motor is used as a traction motor for parallel hybrid electric vehicle. Proposed method can be used as experimental equipment to educate driving characteristics of hybrid electric vehicle.

  • PDF

Effect of Driver's Cognitive Distraction on Driver's Physiological State and Driving Performance

  • Kim, Jun-Hoe;Lee, Woon-Sung
    • Journal of the Ergonomics Society of Korea
    • /
    • v.31 no.2
    • /
    • pp.371-377
    • /
    • 2012
  • Objective: The aim of this study is to investigate effect of driver's cognitive distraction on driver's physiological state and driving performance, and then to determine parameters appropriate for detecting the cognitive distraction. Background: Driver distraction is a major cause of traffic accidents and poses a serious threat to traffic safety due to ever increasing use of in-vehicle information systems and mobile phones during driving. Cognitive distraction, among four different types of distractions, prevents a driver from processing traffic information correctly and adapting to change in surround vehicle behavior in time. However, the cognitive distraction is more difficult to detect because it normally does not involve significant change in driver behavior. Method: A full-scale driving simulator was used to create virtual driving environment and situations. Participants in the experiment drove the driving simulator in three different conditions: attentive driving with no secondary task, driving and conducting secondary task of adding numbers, and driving and conducting secondary task of conversing with an experimenter. Parameters related with driver's physiological state and driving performance were measured and analyzed for their change. Results: The experiment results show that driver's cognitive distraction, induced by secondary task of addition and conversation during driving, increased driver's cognitive workload, and indeed brought change in driver's physiological state and degraded driving performance. Conclusion: The galvanic skin response, pupil size, steering reversal rate, and driver reaction time are shown to be statistically significant for detecting cognitive distraction. The appropriate combination of these parameters will be used to detect the cognitive distraction and estimate risk of traffic accidents in real-time for a driver distraction warning system.

Characteristics of Real-road Driving NOx Emissions from Korean Light-duty Vehicles regarding Driving Routes (주행경로에 따른 국내 소형자동차 실제도로 주행 질소산화물 배출량 특성)

  • Oak, Seonil;Eom, Myoungdo;Lee, Jongtae;Park, Junhong;Kim, Jichul;Chon, Mun Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.1
    • /
    • pp.130-138
    • /
    • 2015
  • Despite of recently strengthened vehicle emission regulations, NOx emissions are not decreased in urban areas because of discrepancies between certification emission test modes and real driving conditions. Thus, researches on RDE-LDV (Real-driving Emission-Light-duty Vehicle) have been conducted actively using PEMS (Portable Emissions Measurement Systems). In the present study, NOx emissions were measured for 5 Korean light duty vehicles for real driving conditions including city, combined, highway, and up-downhill test route. Emission characteristics were analyzed for averaged NOx emissions per unit driving distance of each driving test routes. Furthermore, MAW (Moving Average Window) method based on $CO_2$ emissions from WLTC, which will be supported for EU regulations, was utilized. It was revealed that DRs (deviation ratios) for diesel vehicles (i.e., 5.1 ~ 8.4) were greater than gasoline vehicles (less than 0.15). Especially DR of diesel vehicle for up-downhill test route was 8.4, which indicates severe NOx emissions.

Pseudonym Management in Autonomous Driving Environment (자율주행환경에서 가명성 관리)

  • Hong, Jin Keun
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.10
    • /
    • pp.29-35
    • /
    • 2017
  • In this paper, we describe certificate policy and characteristics in cooperation condition with Cooperative intelligent transport system and autonomous driving vehicle. Among the authentication functions of the vehicle, there is a pseudonym authentication function. This pseudonymity is provided for the purpose of protecting the privacy of information that identifies the vehicle driver, passenger or vehicle. Therefore, the purpose of the pseudonym certificate is to be used for reporting on BSM authentication or misbehavior. However, this pseudonym certificate is used in the OBE of the vehicle and does not have a cryptographic key. In this paper, we consider a method for managing a pseudonym authentication function, which is a key feature of the pseudonym certificate, such as location privacy protection, pseudonym function, disposition of linkage value or CRL, request shuffling processing by registry, butterfly key processing, The authentication policy and its characteristics are examined in detail. In connection with the management of pseudonymes of the vehicle, the attacker must record the BSM transmission and trace the driver or vehicle. In this respect, the results of this study are contributing.

Using OBD2 protocol, A implement of blackbox with vehicle state data and the external video (OBD프로토콜의 차량 주행 데이터와 외부 영상을 이용한 블랙 박스 구현)

  • Back, Sung-Hyun;Jang, Jong-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.97-100
    • /
    • 2010
  • Lately, becausing Life, property loss from car accident, vehicles have been used vehicle blackbox like blackbox by airplane. when the accident happened, existing car blackbox that was stored external image or video of vehicle don't know the vehicle's driving conditions. For knowing vehicle's driving conditions, vehicle is loaded sensors for Variety of measurement and control. the sensors is controlled by ECU(Electronic Control Unit) and all vehicles is used Mandatory OBD2(On-board diagnostics) protocol for communication between ECUs since 2006. Using ODB2 protocol, driver use blackbox data by various driving data to occur vehicle' ECU and can be obtained more definitive information. In this paper, there implement smart blackbox system to use exact vehicle's data using OBD2 protocol rather than blackbox to store external image or video.

  • PDF

Performance and Multi-hop Transmission Tests for Vehicular Communication Systems in Real Road Environments (실제 도로환경에서 차량 통신시스템의 성능 및 멀티홉 전송시험)

  • Song, Jung-Hoon;Lee, Jae-Jeong;Jung, Seung-Wan;Seo, Dae-Wha
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.13 no.1
    • /
    • pp.35-45
    • /
    • 2014
  • The driving environment of the vehicle has characteristics that the change of position, velocity and distance between vehicles is severe. The performance test of system must be carried out in the real road environments with consideration of the driving environment of vehicles to measure the performance correctly because the performance of vehicular communication systems is affected by the driving conditions of the vehicle. In this paper, we propose the test methods of V2V/V2I performance and V2V multi-hop transmission function and present the test results measured by the vehicular communication systems already developed. In the test result, we confirmed the fact that the distance of communication devices and the driving direction of vehicle are affecting the communication performance. We also confirmed the multi-hop transmission function using the driving vehicle in the limited area as the proposed test method.

An Analysis on the Emission Reduction Effect of Diesel Light-duty Truck by Introducing Electronic Toll Collection System on Highways (고속도로 영업소의 자동 요금 징수 시스템 도입에 따른 소형 경유 화물트럭의 배출가스 저감 효과 분석)

  • Park, Junhong;Lee, Jongtae;Lee, Taewoo;Kim, Jiyoung;Kim, Jeongsoo;Kil, Jihoon
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.5
    • /
    • pp.506-517
    • /
    • 2012
  • Electronic Toll Collection System (ETCS), so called "Hi-Pass" in Korea, has improved traffic flow at toll gate of highways. It is known that the improvement of traffic flow should reduce air pollutants and $CO_2$ from vehicles. In this study, real driving emission of a light duty truck with Portable Emission Measurement System(PEMS) has been measured to evaluate the emission reduction effect due to ETCS. The correlations between driving variables and emissions have been analyzed to verify its effect on traffic flow improvement and emission reduction at toll gate. We considered average vehicle speed, Relative Positive Acceleration (RPA), and the distance of queue as driving variables. Compared to passing Manual Toll Collection System (MTCS) lane without queue, ETCS was able to reduce 38.7% of $NO_x$, 21.6% of soot, and 27.7% of $CO_2$. The results showed that the higher the average vehicle speed, the lower RPA and no queue in ETCS contributed to the emission reductions. Linear equation models with RPA and queue have been established by the multiple linear regression method. The linear models resulted in the higher coefficient of determination than those with only average vehicle speed used for establishing vehicle emission factors.

Development of a Driver-Oriented Engine Control Unit (ECU)-Mapping System With BigData Analysis (빅데이터 분석을 통한 운전자 맞춤형 엔진 제어 장치 시스템의 개발)

  • Kim, Shik;Kim, Junghwan
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.12 no.4
    • /
    • pp.247-258
    • /
    • 2017
  • Since 2016 when the regulations related to vehicle structure and device modification were drastically revised, the car tuning market has been growing rapidly. Particularly, many drivers are showing interest in changing the interior and exterior according to their preference, or improving the specifications of their cars by changing the engine and powertrain, among others. Also, as the initial engine settings such as horse power and torque of the vehicle are made for stable driving of the vehicle, it is possible to change the engine performance, via Engine Control Unit (ECU) mapping, to the driver's preference. However, traditionally, ECU mapping could be only performed by professional car engineers and the settings were also decided by them. Therefore, this study proposed a system that collects data related to the driver's driving habits for a certain period and sends them to a cloud server in order to analyze them and recommend ECU mapping values. The traditional mapping method only aimed to improve the car's performance and, therefore, if the changes were not compatible with the driver's driving habits, could cause problems such as incomplete combustion or low fuel efficiency. However, the proposed system allows drivers to set legally permitted ECU mapping based on analysis of their driving habits, and, therefore, different drivers can set it differently according to the vehicle specifications and driving habits. As a result, the system can optimize the car performance by improving output, fuel efficiency, etc. within the range that is legally permitted.

The Fuzzy Steering Control Using a Slope Direction Estimation Method for Small Unmanned Ground Vehicle (경사방향 추정 기법을 이용한 소형로봇의 퍼지 조향 제어)

  • Lee, Sang Hoon;Huh, Jin Wook;Kang, Sincheon;Lee, Myung Chun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.721-728
    • /
    • 2012
  • The tracked SUGVs(Small Unmanned Ground Vehicles) are frequently operated in the narrow slope such as stairs and trails. But due to the nature of the tracked vehicle which is steered using friction between the track and the ground and the limited field of view of driving cameras mounted on the lower position, it is not easy for SUGVs to trace narrow slopes. To properly trace inclined narrows, it is very important for SUGVs to keep it's heading direction to the slope. As a matter of factor, no roll value control of a SUGV can makes it's heading being located in the direction of the slope in general terrains. But, the problem is that we cannot directly control roll motion for SUGV. Instead we can control yaw motion. In this paper, a new slope driving method that enables the vehicle trace the narrow slopes with IMU sensor usually mounted in the SUGV is suggested which including an estimation technique of the desired yaw angle corresponding to zero roll angle. In addition, a fuzzy steering controller robust to changes in driving speed and the stair geometry is designed to simulate narrow slope driving with the suggested method. It is shown that the suggested method is quite effective through the simulation.

Comparative Study on Autonomous Vehicle Operation Status in South Korea and China - Focusing on Xiong'an New District in China and Sejong City in South Korea -

  • Sen Zhan;Choong-Sik Chung
    • Journal of Platform Technology
    • /
    • v.12 no.1
    • /
    • pp.12-31
    • /
    • 2024
  • Today, many countries around the world recognize the development of autonomous vehicles as a national growth engine, support technology development through various projects, and promote it as national policy. China and Korea are representative countries that are strongly promoting autonomous vehicle policies. The Chinese government's policy direction for self-driving cars focuses on support for fostering new industries. Korea has established mid- to long-term goals and plans to foster the future mobility industry as a key growth engine and is promoting these as a national task. Recently, China and Korea have established national pilot areas to test autonomous vehicle operation and are actively pursuing policies. We aim to compare and analyze the operation status of self-driving cars in China's Xiong'an New Area and South Korea's Sejong City and derive policy implications regarding self-driving cars, which are emerging as a key industry of the future. According to the analysis results, it was found that China's Xiong'an New District is ahead of Korea's Sejong City in terms of leader leadership. As a result, autonomous driving is being operated at the government-wide and national level in Xiong'an New Area. In terms of the driving force, in the case of Xiongan New Area, the policy is being promoted by companies centered on Baidu, and in the case of Sejong City, the policy is being promoted by the local government. As a result, it is estimated that Xiongan New Area will be able to reach commercialization before Sejong City. In the final policy proposal, it was proposed to break away from the existing government-led method and switch to a collaboration with the private sector and a private-led method.

  • PDF