• Title/Summary/Keyword: Vehicle Damage Detection

Search Result 76, Processing Time 0.028 seconds

Damaged cable detection with statistical analysis, clustering, and deep learning models

  • Son, Hyesook;Yoon, Chanyoung;Kim, Yejin;Jang, Yun;Tran, Linh Viet;Kim, Seung-Eock;Kim, Dong Joo;Park, Jongwoong
    • Smart Structures and Systems
    • /
    • v.29 no.1
    • /
    • pp.17-28
    • /
    • 2022
  • The cable component of cable-stayed bridges is gradually impacted by weather conditions, vehicle loads, and material corrosion. The stayed cable is a critical load-carrying part that closely affects the operational stability of a cable-stayed bridge. Damaged cables might lead to the bridge collapse due to their tension capacity reduction. Thus, it is necessary to develop structural health monitoring (SHM) techniques that accurately identify damaged cables. In this work, a combinational identification method of three efficient techniques, including statistical analysis, clustering, and neural network models, is proposed to detect the damaged cable in a cable-stayed bridge. The measured dataset from the bridge was initially preprocessed to remove the outlier channels. Then, the theory and application of each technique for damage detection were introduced. In general, the statistical approach extracts the parameters representing the damage within time series, and the clustering approach identifies the outliers from the data signals as damaged members, while the deep learning approach uses the nonlinear data dependencies in SHM for the training model. The performance of these approaches in classifying the damaged cable was assessed, and the combinational identification method was obtained using the voting ensemble. Finally, the combination method was compared with an existing outlier detection algorithm, support vector machines (SVM). The results demonstrate that the proposed method is robust and provides higher accuracy for the damaged cable detection in the cable-stayed bridge.

Performance Enhancement Algorithm using Supervised Learning based on Background Object Detection for Road Surface Damage Detection (도로 노면 파손 탐지를 위한 배경 객체 인식 기반의 지도 학습을 활용한 성능 향상 알고리즘)

  • Shim, Seungbo;Chun, Chanjun;Ryu, Seung-Ki
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.3
    • /
    • pp.95-105
    • /
    • 2019
  • In recent years, image processing techniques for detecting road surface damaged spot have been actively researched. Especially, it is mainly used to acquire images through a smart phone or a black box that can be mounted in a vehicle and recognize the road surface damaged region in the image using several algorithms. In addition, in conjunction with the GPS module, the exact damaged location can be obtained. The most important technology is image processing algorithm. Recently, algorithms based on artificial intelligence have been attracting attention as research topics. In this paper, we will also discuss artificial intelligence image processing algorithms. Among them, an object detection method based on an region-based convolution neural networks method is used. To improve the recognition performance of road surface damage objects, 600 road surface damaged images and 1500 general road driving images are added to the learning database. Also, supervised learning using background object recognition method is performed to reduce false alarm and missing rate in road surface damage detection. As a result, we introduce a new method that improves the recognition performance of the algorithm to 8.66% based on average value of mAP through the same test database.

A study on road damage detection for safe driving of autonomous vehicles based on OpenCV and CNN

  • Lee, Sang-Hyun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.2
    • /
    • pp.47-54
    • /
    • 2022
  • For safe driving of autonomous vehicles, road damage detection is very important to lower the potential risk. In order to ensure safety while an autonomous vehicle is driving on the road, technology that can cope with various obstacles is required. Among them, technology that recognizes static obstacles such as poor road conditions as well as dynamic obstacles that may be encountered while driving, such as crosswalks, manholes, hollows, and speed bumps, is a priority. In this paper, we propose a method to extract similarity of images and find damaged road images using OpenCV image processing and CNN algorithm. To implement this, we trained a CNN model using 280 training datasheets and 70 test datasheets out of 350 image data. As a result of training, the object recognition processing speed and recognition speed of 100 images were tested, and the average processing speed was 45.9 ms, the average recognition speed was 66.78 ms, and the average object accuracy was 92%. In the future, it is expected that the driving safety of autonomous vehicles will be improved by using technology that detects road obstacles encountered while driving.

Loop closure-based high-resolution façade digital modeling technique of large-scale dams using UAV

  • Myung Soo Kang;Keunyoung Jang;Yong-Rae Yu;Yun-Kyu An
    • Smart Structures and Systems
    • /
    • v.33 no.5
    • /
    • pp.349-358
    • /
    • 2024
  • Structural digital models can be effectively established by spatially obtaining digital images using an unmanned aerial vehicle (UAV). One of the main purposes of the structural digital modeling is computer vision-based exterior damage detection of a target structure. To investigate micro-scale damage from the digital model, high-resolution digital images obtained with a close-up vision survey is typically required. However, serial image synthesis such as image stitching may cumulate stitching errors as the number of scanned images increases. Therefore, in this paper, a novel loop closure-based digital image stitching technique is proposed and experimentally validated using the close-up surveyed digital images acquired from an in-situ dam structure located in South Korea. The test results reveal that the proposed technique outperforms a non-loop closure-based image stitching technique, which can cause serious distortions, such as ghosting and vanishing phenomena.

A case study of protecting bridges against overheight vehicles

  • Aly, Aly Mousaad;Hoffmann, Marc A.
    • Steel and Composite Structures
    • /
    • v.43 no.2
    • /
    • pp.165-183
    • /
    • 2022
  • Most transportation departments have recognized and developed procedures to address the ever-increasing weights of trucks traveling on bridges in a service today. Transportation agencies also recognize the issues with overheight vehicles' collisions with bridges, but few stakeholders have definitive countermeasures. Bridges are becoming more vulnerable to collisions from overheight vehicles. The exact response under lateral impact force is difficult to predict. In this paper, nonlinear impact analysis shows that the degree of deformation recorded through the modeling of the unprotected vehicle-girder model provides realistic results compared to the observation from the US-61 bridge overheight vehicle impact. The predicted displacements are 0.229 m, 0.161 m, and 0.271 m in the girder bottom flange (lateral), bottom flange (vertical), and web (lateral) deformations, respectively, due to a truck traveling at 112.65 km/h. With such large deformations, the integrity of an impacted bridge becomes jeopardized, which in most cases requires closing the bridge for safety reasons and a need for rehabilitation. We proposed different sacrificial cushion systems to dissipate the energy of an overheight vehicle impact. The goal was to design and tune a suitable energy absorbing system that can protect the bridge and possibly reduce stresses in the overheight vehicle, minimizing the consequences of an impact. A material representing a Sorbothane high impact rubber was chosen and modeled in ANSYS. Out of three sacrificial schemes, a sandwich system is the best in protecting both the bridge and the overheight vehicle. The mitigation system reduced the lateral deflection in the bottom flange by 89%. The system decreased the stresses in the bridge girder and the top portion of the vehicle by 82% and 25%, respectively. The results reveal the capability of the proposed sacrificial system as an effective mitigation system.

A Study on the Real-time Recognition Methodology for IoT-based Traffic Accidents (IoT 기반 교통사고 실시간 인지방법론 연구)

  • Oh, Sung Hoon;Jeon, Young Jun;Kwon, Young Woo;Jeong, Seok Chan
    • The Journal of Bigdata
    • /
    • v.7 no.1
    • /
    • pp.15-27
    • /
    • 2022
  • In the past five years, the fatality rate of single-vehicle accidents has been 4.7 times higher than that of all accidents, so it is necessary to establish a system that can detect and respond to single-vehicle accidents immediately. The IoT(Internet of Thing)-based real-time traffic accident recognition system proposed in this study is as following. By attaching an IoT sensor which detects the impact and vehicle ingress to the guardrail, when an impact occurs to the guardrail, the image of the accident site is analyzed through artificial intelligence technology and transmitted to a rescue organization to perform quick rescue operations to damage minimization. An IoT sensor module that recognizes vehicles entering the monitoring area and detects the impact of a guardrail and an AI-based object detection module based on vehicle image data learning were implemented. In addition, a monitoring and operation module that imanages sensor information and image data in integrate was also implemented. For the validation of the system, it was confirmed that the target values were all met by measuring the shock detection transmission speed, the object detection accuracy of vehicles and people, and the sensor failure detection accuracy. In the future, we plan to apply it to actual roads to verify the validity using real data and to commercialize it. This system will contribute to improving road safety.

An image-based deep learning network technique for structural health monitoring

  • Lee, Dong-Han;Koh, Bong-Hwan
    • Smart Structures and Systems
    • /
    • v.28 no.6
    • /
    • pp.799-810
    • /
    • 2021
  • When monitoring the structural integrity of a bridge using data collected through accelerometers, identifying the profile of the load exerted on the bridge from the vehicles passing over it becomes a crucial task. In this study, the speed and location of vehicles on the deck of a bridge is reconfigured using real-time video to implicitly associate the load applied to the bridge with the response from the bridge sensors to develop an image-based deep learning network model. Instead of directly measuring the load that a moving vehicle exerts on the bridge, the intention in the proposed method is to replace the correlation between the movement of vehicles from CCTV images and the corresponding response by the bridge with a neural network model. Given the framework of an input-output-based system identification, CCTV images secured from the bridge and the acceleration measurements from a cantilevered beam are combined during the process of training the neural network model. Since in reality, structural damage cannot be induced in a bridge, the focus of the study is on identifying local changes in parameters by adding mass to a cantilevered beam in the laboratory. The study successfully identified the change in the material parameters in the beam by using the deep-learning neural network model. Also, the method correctly predicted the acceleration response of the beam. The proposed approach can be extended to the structural health monitoring of actual bridges, and its sensitivity to damage can also be improved through optimization of the network training.

Design and Implementation of Unmanned Surface Vehicle JEROS for Jellyfish Removal (해파리 퇴치용 자율 수상 로봇의 설계 및 구현)

  • Kim, Donghoon;Shin, Jae-Uk;Kim, Hyongjin;Kim, Hanguen;Lee, Donghwa;Lee, Seung-Mok;Myung, Hyun
    • The Journal of Korea Robotics Society
    • /
    • v.8 no.1
    • /
    • pp.51-57
    • /
    • 2013
  • Recently, the number of jellyfish has been rapidly grown because of the global warming, the increase of marine structures, pollution, and etc. The increased jellyfish is a threat to the marine ecosystem and induces a huge damage to fishery industries, seaside power plants, and beach industries. To overcome this problem, a manual jellyfish dissecting device and pump system for jellyfish removal have been developed by researchers. However, the systems need too many human operators and their benefit to cost is not so good. Thus, in this paper, the design, implementation, and experiments of autonomous jellyfish removal robot system, named JEROS, have been presented. The JEROS consists of an unmanned surface vehicle (USV), a device for jellyfish removal, an electrical control system, an autonomous navigation system, and a vision-based jellyfish detection system. The USV was designed as a twin hull-type ship, and a jellyfish removal device consists of a net for gathering jellyfish and a blades-equipped propeller for dissecting jellyfish. The autonomous navigation system starts by generating an efficient path for jellyfish removal when the location of jellyfish is received from a remote server or recognized by a vision system. The location of JEROS is estimated by IMU (Inertial Measurement Unit) and GPS, and jellyfish is eliminated while tracking the path. The performance of the vision-based jellyfish recognition, navigation, and jellyfish removal was demonstrated through field tests in the Masan and Jindong harbors in the southern coast of Korea.

Dynamic response uncertainty analysis of vehicle-track coupling system with fuzzy variables

  • Ye, Ling;Chen, Hua-Peng;Zhou, Hang;Wang, Sheng-Nan
    • Structural Engineering and Mechanics
    • /
    • v.75 no.4
    • /
    • pp.519-527
    • /
    • 2020
  • Dynamic analysis of a vehicle-track coupling system is important to structural design, damage detection and condition assessment of the structural system. Deterministic analysis of the vehicle-track coupling system has been extensively studied in the past, however, the structural parameters of the coupling system have uncertainties in engineering practices. It is essential to treat the parameters of the vehicle-track coupling system with consideration of uncertainties. In this paper, a method for predicting the bounds of the vehicle-track coupling system responses with uncertain parameters is presented. The uncertain system parameters are modeled as fuzzy variables instead of conventional random variables with known probability distributions. Then, the dynamic response functions of the coupling system are transformed into a component function based on the high dimensional representation approximation. The Lagrange interpolation method is used to approximate the component function. Finally, the bounds of the system's dynamic responses can be predicted by using Monte Carlo method for the interpolation polynomials of the Lagrange interpolation function. A numerical example is introduced to illustrate the ability of the proposed method to predict the bounds of the system's dynamic responses, and the results are compared with the direct Monte Carlo method. The results show that the proposed method is effective and efficient to predict the bounds of the system's dynamic responses with fuzzy variables.

Detection of Collapse Buildings Using UAV and Bitemporal Satellite Imagery (UAV와 다시기 위성영상을 이용한 붕괴건물 탐지)

  • Jung, Sejung;Lee, Kirim;Yun, Yerin;Lee, Won Hee;Han, Youkyung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.3
    • /
    • pp.187-196
    • /
    • 2020
  • In this study, collapsed building detection using UAV (Unmanned Aerial Vehicle) and PlanetScope satellite images was carried out, suggesting the possibility of utilization of heterogeneous sensors in object detection located on the surface. To this end, the area where about 20 buildings collapsed due to forest fire damage was selected as study site. First of all, the feature information of objects such as ExG (Excess Green), GLCM (Gray-Level Co-Occurrence Matrix), and DSM (Digital Surface Model) were generated using high-resolution UAV images performed object-based segmentation to detect collapsed buildings. The features were then used to detect candidates for collapsed buildings. In this process, a result of the change detection using PlanetScope were used together to improve detection accuracy. More specifically, the changed pixels acquired by the bitemporal PlanetScope images were used as seed pixels to correct the misdetected and overdetected areas in the candidate group of collapsed buildings. The accuracy of the detection results of collapse buildings using only UAV image and the accuracy of collapse building detection result when UAV and PlanetScope images were used together were analyzed through the manually dizitized reference image. As a result, the results using only UAV image had 0.4867 F1-score, and the results using UAV and PlanetScope images together showed that the value improved to 0.8064 F1-score. Moreover, the Kappa coefficiant value was also dramatically improved from 0.3674 to 0.8225.