• Title/Summary/Keyword: Vehicle Communication Technology

Search Result 681, Processing Time 0.024 seconds

Smart Phone and Vehicle Authentication Scheme with M2M Device (M2M 기기에서 스마트폰 및 차량 인증 기법)

  • Yeo, Seong-Gwon;Lee, Keun-Ho
    • Journal of the Korea Convergence Society
    • /
    • v.2 no.4
    • /
    • pp.1-7
    • /
    • 2011
  • As the developing of the information technology, M2M market that is using communication between devices is growing rapidly and many companies are involved in M2M business. In this paper, the concept of telematics and vulnerabilities of vehicle network security are discussed. The convergence of vehicle and information technology, the development of mobile communication technology have improved quality of service that provided to user but as a result security threats has diverse. We proposed new business model that be occurred to the participation of mobile carriers in telematics business and we analyzed mobile radio communication network security vulnerabilities. We proposed smart phone and Vehicle authentication scheme with M2M device as a way to solve vulnerabilities.

The analysis of technology of the connected car (커넥티드 카의 기술 분석)

  • Shim, Hyun-Bo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.211-215
    • /
    • 2015
  • It comes into the spotlight as the new Blue Ocean in which the connected car industry in which the car and mobile communication technology is convergence. All sorts of infortainments services connecting with the portable electronic device(Smart phone, tablet PC, and MP3 player) and car are rapidly grown. The Connected car emphasizes the vehicle connectivity with the concept that the car has communication with the around on a real time basis and it provides the safety and expedience to the operator and using the thing of Internet (IoT) in the car and supports the application, presently, the entertainment service including the real-time Navigation, parking assistant function, not only the remote vehicle control and management service but also Email, multimedia streaming service, SNS and with the platform. Intelligent vehicle network is studied as the kind according to MANET(Mobile Ad Hoc Network) for the safety operation of the cars of the road and improving the efficiency of the driving. The intelligent vehicle network is comprised for the driving information offering changing rapidly of the communication(V2V: Vehicle to Vehicle) between the car and the car, communication(V2I : Vehicle to Infrastructure) between the infrastructure and the car, and V2X (Vehicle to Nomadic).

  • PDF

A study on the Analysis of Radio Characteristics about Communication Mode in a Road (공용도로에서의 통신방식에 대한 전파특성 분석 연구)

  • Choi, Gi-Do;Lim, Ki-Taek;Cho, Hyung-Rae
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.15 no.1
    • /
    • pp.95-101
    • /
    • 2016
  • Vehicular communications is system which can be applied for transmission of various safety messages or Intelligent Transportation Systems(ITS) applications by combining vehicle/road technology with Information and Communication Technology(ICT). In recent years, a variety of ITS services are available such as driving information, road conditions, V2X messages as well as navigation and traffic jams notification. In general, vehicular communications can be used for vehicle-to-vehicle and vehicle-to-infrastructure communication by adopting IEEE802.11p/1609 standard which is commonly known as wireless access in vehicular environments. In this paper, WAVE communication standard based on the IEEE802.11p is explained and signal characteristics in WAVE communication is introduced. Also, The H/W and S/W characteristics in Road Side Station and On Board Equipment for the Vehicle to Everything communication are analyzed. Received Signal Strength which is power of receiving signal of communication equipment is measured in test road to estimate the real WAVE communication's performance. It is shown that the implemented WAVE communication technology is satisfactory to provide ITS services.

Communication Interoperability of Electric Uehicle Charging Infrastructure and Grid Network (전기차 충전 인프라와 전력망 간의 통신 상호운용성 연구)

  • Ju, Seunghwan;Lee, Ilho;Song, Sanghoon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.14 no.1
    • /
    • pp.15-25
    • /
    • 2018
  • ISO/IEC 15118 is a standard for communications and services for electric vehicle charging infrastructure. Although this standard deals only with data communication between an electric vehicle and a charge station, communication with the outside is essential for establishing an authentication system for vehicle certification and V2G service for electric power transmission. In this study, it was designed to verify the information of electric car charging infrastructure in electric power system through communication link between ISO/IEC 15118 electric vehicle model and IEC 61850 standard MMS protocol. This is demonstrated in the field so that the electric vehicle communication data is linked with the micro grid management system. This could be used as an element technology in other distributed power sources as well as electric cars in the future.

An Analysis of the Radio Interference in Wireless Vehicular Networks based on IEEE802.11b(WLAN) (IEEE802.11b(WLAN)기반의 차량 무선통신환경에서 전파간섭분석)

  • Lee, Myungsub;Park, Changhyeon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.6
    • /
    • pp.117-125
    • /
    • 2012
  • Recently, there has been a fast paradigm shift in the automotive market from the traditional machine-oriented technology into the technology for vehicle informatics and electronics. In particular, telematics market is accelerating the development of technologies for vehicle informatics through the close cooperation between the vehicle makers and mobile communication companies. However, there may be the degradation of the quality of service by the interference since the telematics uses the wireless communication infrastructure for the base station-to-vehicle communication and the vehicle-to-vehicle communication. This paper presents an analysis device to easily analyze the interference by the wireless communication in the vehicle wireless network environment. Using the analysis results by the presented device, this paper shows that the link quality can be improved through the simulation and the experiment in real environment both.

Service Realization of WAVE based Vehicular Communication Systems in the Testbed (테스트베드상에서 WAVE기반 차량통신 시스템의 서비스 구현)

  • Cho, Woong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.10
    • /
    • pp.1589-1594
    • /
    • 2013
  • Vehicular communication is one of representative convergence technology which combines information technology and vehicle industry. Wireless Access in Vehicular Environments (WAVE) technology is vehicular communication standard which is widely used in the world. In this paper, we introduce service realization of WAVE based vehicular communication systems in the practical testbed. We review the overall WAVE based systems in brief and introduce the testbed. Then, we investigate various applications using vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications. Based on realization of systems, we discuss practical implementation issues and the convergence area of WAVE systems.

Map Building Based on Sensor Fusion for Autonomous Vehicle (자율주행을 위한 센서 데이터 융합 기반의 맵 생성)

  • Kang, Minsung;Hur, Soojung;Park, Ikhyun;Park, Yongwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.6
    • /
    • pp.14-22
    • /
    • 2014
  • An autonomous vehicle requires a technology of generating maps by recognizing surrounding environment. The recognition of the vehicle's environment can be achieved by using distance information from a 2D laser scanner and color information from a camera. Such sensor information is used to generate 2D or 3D maps. A 2D map is used mostly for generating routs, because it contains information only about a section. In contrast, a 3D map involves height values also, and therefore can be used not only for generating routs but also for finding out vehicle accessible space. Nevertheless, an autonomous vehicle using 3D maps has difficulty in recognizing environment in real time. Accordingly, this paper proposes the technology for generating 2D maps that guarantee real-time recognition. The proposed technology uses only the color information obtained by removing height values from 3D maps generated based on the fusion of 2D laser scanner and camera data.

Exploring the Key Priority of V2H Communication Technology Using the KANO Model (KANO 모델을 활용한 V2H 커뮤니케이션 기술의 우선순위 분석)

  • SangHwa, Lee;SooHee, Kang;Jeong Ah, Jang
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.4
    • /
    • pp.91-99
    • /
    • 2022
  • In Korea, various studies on autonomous vehicles are being conducted with the aim of commercializing the fully autonomous driving (Lv.4) on major roads in 2027. Currently, the communication between non-autonomous vehicles and road users is made with gestures, eye contact, and verbal signals. In the case of autonomous vehicles in the future, autonomous vehicles should communicate instead of drivers. Recently, V2H communication technology (communication technology between autonomous vehicles and road users) is being developed. This study shows technology priorities using the KANO model in caution (warning) and traffic (concession) situations. As a result, a total of six attractive quality technologies were analyzed: technology to provide dark warning information in a display graphic; technology to provide dark warning information in a projection graphic; technology to provide light concession information in a display graphic; technology to provide dark concession information in a display graphic. In the future, it will investigate the preference of users in providing V2H information by road situation. It will be used as a V2H design priority.

Prototype Implementation of Control Board for Vehicle V2X Communication Performance Evaluation (자동차 V2X 통신성능 평가를 위한 제어 보드 프로토타입 구현)

  • Yoowon Kim;Byeongchan Jo;Hyuk Jung
    • Journal of Auto-vehicle Safety Association
    • /
    • v.15 no.2
    • /
    • pp.28-34
    • /
    • 2023
  • The Republic of Korea aims to complete the commercialisation of Level 4+ cooperative autonomous driving in 2027. It also plans to include V2X OBU in the K-NCAP evaluation items. Therefore, communication performance safety evaluation criteria for V2X OBU need to be established, and an OBU with necessary functions is needed to develop V2X communication performance safety evaluation technology for vehicles. In this study, we implemented a V2X OBU control board prototype that can be used to develop a V2X communication performance safety evaluation technology for Level 4+ autonomous vehicles, and confirmed that the control board prototype works normally.

Design of V2I Based Vehicle Identification number In a VANET Environment (VANET 환경에서 차대번호를 활용한 V2I기반의 통신 프로토콜 설계)

  • Lee, Joo-Kwan;Park, Byeong-Il;Park, Jae-Pyo;Jun, Mun-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.12
    • /
    • pp.7292-7301
    • /
    • 2014
  • With the development of IT Info-Communications technology, the vehicle with a combination of wireless-communication technology has resulted in significant research into the convergence of the component of existing traffic with information, electronics and communication technology. Intelligent Vehicle Communication is a Machine-to-Machine (M2M) concept of the Vehicle-to-Vehicle. The Vehicle-to-Infrastructure communication consists of safety and the ease of transportation. Security technologies must precede the effective Intelligent Vehicle Communication Structure, unlike the existing internet environment, where high-speed vehicle communication is with the security threats of a wireless communication environment and can receive unusual vehicle messages. In this paper, the Vehicle Identification number between the V2I and the secure message communication protocol was proposed using hash functions and a time stamp, and the validity of the vehicle was assessed. The proposed system was the performance evaluation section compared to the conventional technique at a rate VPKI aspect showed an approximate 44% reduction. The safety, including authentication, confidentiality, and privacy threats, were analyzed.