• Title/Summary/Keyword: Vehicle Capacity

Search Result 631, Processing Time 0.027 seconds

Finite Element Analysis and Evaluation of Rubber Spring for Railway Vehicle (철도차량용 고무스프링 특성해석 및 평가)

  • Woo, Chang-Su;Kim, Wan-Doo;Choi, Byung-Ik;Park, Hyun-Sung;Kim, Kyung-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.8
    • /
    • pp.773-778
    • /
    • 2009
  • Chevron rubber springs are used in primary suspensions for rail vehicle. Chevron rubber spring have function which reduce vibration and noise, support load carried in operation of rail vehicle. Prediction and evaluation of characteristics are very important in design procedure to assure the safety and reliability of the rubber spring. The computer simulation using the nonlinear finite element analysis program executed to predict and evaluate the load capacity and stiffness for the chevron spring. The non-linear properties of rubber which are described as strain energy functions are important parameters. These are determined by material tests which are uniaxial tension, equi-biaxial tension and shear test. The appropriate shape and material properties are proposed to adjust the required characteristics of rubber springs in the three modes of flexibility.

Recent Advances in Cold-Start and Drive Capability of Fuel Cell Electric Vehicle

  • Sung, Woo-Suk;Suh, Kyung-Won;Kweon, Soon-Gil;Park, Jong-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.47-50
    • /
    • 2008
  • The sub-zero cold is a major environmental consideration for the operational readiness of FCEVs because fuel cells produce water and utilize wet air with varying water content to generate electricity. Typical fuel cells thus have a fatal flaw in freezing conditions at startup. This drawback becomes more serious with the outsourced fuel cell that is entirely water-based for its internal humidification. In this background, the HMC's self-designed fuel cell was developed as an alternative and was employed in the Tucson-based FCEV in 2006 demonstrating its good cold-startup characteristics. The cold-startup capacity of the vehicle was validated through tests in the cold chamber and on the road, resulting in 50% stack power achieved in 250 seconds at $-15^{\circ}C$.

  • PDF

Evaluation of Characteristics of Chevron Spring for Rail Vehicle (철도차량용 셰브론 스프링의 특성 평가)

  • 김완두;김완수;우창수;정승일;김석원;김영구
    • Proceedings of the KSR Conference
    • /
    • 2001.05a
    • /
    • pp.186-192
    • /
    • 2001
  • A chevron rubber spring is used in primary suspension system for rail vehicle. The chevron spring has function which support the load carried and reduce vibration and noise in operation of rail vehicle. The computer simulation using the non-linear finite element analysis program MARC executed to predict and evaluate the load capacity and stiffness for tile chevron spring. The appropriate shape and material properties are proposed to adjust the required characteristics of chevron spring in the three modes of flexibility. Also, several samples of chevron spring are manufactured and experimented. It is shown that the predicted values agree well tile results obtained from experiments.

  • PDF

Occupational Injury Prevention Research in NIOSH

  • Hsiao, Hongwei;Stout, Nancy
    • Safety and Health at Work
    • /
    • v.1 no.2
    • /
    • pp.107-111
    • /
    • 2010
  • This paper provided a brief summary of the current strategic goals, activities, and impacts of the NIOSH (National Institute for Occupational Safety and Health) occupational injury research program. Three primary drivers (injury database, stakeholder input, and staff capacity) were used to define NIOSH research focuses to maximize relevance and impact of the NIOSH injury-prevention-research program. Injury data, strategic goals, program activities, and research impacts were presented with a focus on prevention of four leading causes of workplace injury and death in the US: motor vehicle incidents, falls, workplace violence, and machine and industrial vehicle incidents. This paper showcased selected priority goals, activities, and impacts of the NIOSH injury prevention program. The NIOSH contribution to the overall decrease in fatalities and injuries is reinforced by decreases in specific goal areas. There were also many intermediate outcomes that are on a direct path to preventing injuries, such as new safety regulations and standards, safer technology and products, and improved worker safety training. The outcomes serve as an excellent foundation to stimulate further research and worldwide partnership to address global workplace injury problems.

Auxiliary Power Unit Control Algorithm for Input Voltage Disturbance Suppression (입력 급변 대응을 위한 철도 차량용 보조전원장치 외란 억제 알고리즘 구현)

  • Kim, Ji-Chan;Baek, Seoung-Gil;Cha, Hanju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.12
    • /
    • pp.1810-1817
    • /
    • 2015
  • The railway vehicle has an auxiliary power unit for supplying power to the associated electronic control devices and passenger service unit. Typically, input voltage from the catenary for rolling stock is highly fluctuating according to the substation capacity, vehicle propulsion and regeneration. Especially, the frost and freezing on contact wire in winter can cause a blackout inside vehicle, and also brings about electronic components damaging and the system down. To prevent this problem, a large filter and capacitor is used. But this is not a perfect solution, because it is increasing weight of the unit. In this paper, a new algorithm is proposed to suppress the disturbance without adding devices. Simulation and experimental results show that the proposed algorithm has performance to suppress the disturbance at the sudden input voltage variations.

A Study on Electric Power Supply Analysis of Urban MAGLEV Vehicle (도시형 자기부상열차의 전력특성 분석에 관한 연구)

  • Ahn, Young-Hoon
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.157-161
    • /
    • 2008
  • The main purpose of this study is to analysis of urban MAGLEV vehicle for the Incheon International Airport Maglev railway, in the process of construction at the moment, in Korea. For analysis of urban MAGLEV, we have measurement power a special quality of MAGLEV operating the center science museum in Deajeon. 1) The power property related to urban MAGLEV vehicle demand on the Incheon International Airport Maglev railway track and substation capacity compared to the result given. 2) The optimum design of substation is determined based on the analysis. 3) The equipments of substation are determined based on the analysis. The result of measurement performance, therefore, enables us to reflect the good property, to the power supply design. The result of research performance, therefore, enables us to reflect the Power Supply System design for the stabilized and economized MAGLEV operation.

  • PDF

Design of Hybrid V2X Communication Module for Electromagnetic Confirmity Evaluation (전자파 적합성 평가를 위한 하이브리드 V2X 통신모듈 설계)

  • Seungkyu Choi;Juwon Lee;Kyuhyeon Kim
    • Journal of Auto-vehicle Safety Association
    • /
    • v.15 no.4
    • /
    • pp.65-70
    • /
    • 2023
  • In the paper, we propose a design method and process of a hybrid V2X communication module that combines WAVE communication, LTE-V2X communication, and legacy LTE communication in evaluating vehicle V2X electromagnetic compatibility. C-ITS is suitable for safety service applications due to its low latency, and legacy LTE is suitable for applications such as traffic information and infotainment due to its high latency and high capacity. In order to evaluate the V2X communication system, the evaluation equipment must have communication performance of the same level or higher. The main design contents presented in this paper will be applied to the implementation of a hybrid V2X communication module for electromagnetic compatibility evaluation.

Aircraft delivery vehicle with fuzzy time window for improving search algorithm

  • C.C. Hung;T. Nguyen;C.Y. Hsieh
    • Advances in aircraft and spacecraft science
    • /
    • v.10 no.5
    • /
    • pp.393-418
    • /
    • 2023
  • Drones are increasingly used in logistics delivery due to their low cost, high-speed and straight-line flight. Considering the small cargo capacity, limited endurance and other factors, this paper optimized the pickup and delivery vehicle routing problem with time windows in the mode of "truck+drone". A mixed integer programming model with the objective of minimizing transportation cost was proposed and an improved adaptive large neighborhood search algorithm is designed to solve the problem. In this algorithm, the performance of the algorithm is improved by designing various efficient destroy operators and repair operators based on the characteristics of the model and introducing a simulated annealing strategy to avoid falling into local optimum solutions. The effectiveness of the model and the algorithm is verified through the numerical experiments, and the impact of the "truck+drone" on the route cost is analyzed, the result of this study provides a decision basis for the route planning of "truck+drone" mode delivery.

Behavior Analysis of Fill Slope by Vehicle Collision on Guardrail (가드레일에 차량 충돌 시 성토사면의 거동분석)

  • Park, Hyunseob;Ahn, Kwangkuk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.2
    • /
    • pp.67-74
    • /
    • 2014
  • Recently, the number of road construction is increasing by industrial development. According to this industrial tendency, the number of traffic accidents are consistently increasing due to increasing number of vehicle on the road. This is mainly because traffic accidents are occurred by various parameter such as negligence of driver, vehicle defects, state of unstable road, natural environment etc. Lane department of vehicles from guardrail is occurring frequently. This type of accident is caused by vehicle performance improvement and shape of vehicle, weak guardrail installation and maintenance. Guardrail has the purpose on prevention such as prevention of traffic accident and prevention of deviating out of road, minimizing damage of driver and vehicle by collision as well as entry into the road through guardrail. Stability evaluation test of guardrail verifies the behavior of guardrail through the crash of truck. At this time, the crash condition has 100 km/h of velocity and $15^{\circ}$ of impact angle. In the case of ground condition, filling slope condition has relatively high bearing capacity of infinite ground towards the test. Guardrail is generally installed on road of shoulder in fill slope in korea. It is possible for stability problem to deteriorate ground bearing capacity in Guardrail in fill slope. The existed study towards stability of guardrail has been carried out in the infinite ground. However, the study on the behavior of fill slope with guardrail is not performed by vehicle collision. Therefore, In this study, the numerical analysis using LS-DYNA was executed for verification on behavior of fill slope with guardrail through vehicle collision. This numerical analysis was carried out with change of embedded depth on installed guardrail post in shoulder of fill slope by vehicle collision and 8 tonf truck crash providing at NCAN (National Crash Analysis Center). As the result, displacement and stress on fill slope are decreased in accordance with the increase of embedded depth of guardrail post. Ground bearing capacity is deteriorated at depth of 450 mm form shoulder of road on fill slope.

Development and Evaluation of Smart Roundabout Using Connected Vehicle (Connected Vehicle을 이용한 Smart Roundabout의 개발과 평가)

  • Kim, Hoe Kyoung;Lee, Young Bin;Yoon, Chil Yong;Oh, Yun Pyo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.1
    • /
    • pp.243-250
    • /
    • 2014
  • Modern roundabouts referred to as relatively safer and more efficient traffic facility than the signalized intersections have been recently deployed and operated and accordingly more research efforts to improve its safety and efficiency have been made so far. This paper introduces a new traffic information system named as Smart Roundabout coupled with Connected Vehicle technique like Vehicle-to-Roadside communication, which has not been attempted before and evaluates its performance with a microscopic simulation model, VISSIM. The proposed system functions to collect driving information of circulating vehicles in the roundabout such as location, speed, critical headway, etc. and help approaching vehicles decide whether to enter the roundabout with an on-board equipment instrumented in the individual vehicle on the basis of calculated gap acceptance of interest. This new system is expected to secure more safety and increase the capacity of the modern roundabout.