• 제목/요약/키워드: Vehicle Black Box

Search Result 95, Processing Time 0.025 seconds

An Overloaded Vehicle Identifying System based on Object Detection Model (객체 인식 모델을 활용한 적재불량 화물차 탐지 시스템 개발)

  • Jung, Woojin;Park, Yongju;Park, Jinuk;Kim, Chang-il
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.562-565
    • /
    • 2022
  • Recently, the increasing number of overloaded vehicles on the road poses a risk to traffic safety, such as falling objects, road damage, and chain collisions due to the abnormal weight distribution, and can cause great damage once an accident occurs. However, this irregular weight distribution is not possible to be recognized with the current weight measurement system for vehicles on roads. To address this limitation, we propose to build an object detection-based AI model to identify overloaded vehicles that cause such social problems. In addition, we present a simple yet effective method to construct an object detection model for the large-scale vehicle images. In particular, we utilize the large-scale of vehicle image sets provided by open AI-Hub, which include the overloaded vehicles from the CCTV, black box, and hand-held camera point of view. We inspected the specific features of sizes of vehicles and types of image sources, and pre-processed these images to train a deep learning-based object detection model. Finally, we demonstrated that the detection performance of the overloaded vehicle was improved by about 23% compared to the one using raw data. From the result, we believe that public big data can be utilized more efficiently and applied to the development of an object detection-based overloaded vehicle detection model.

  • PDF

Development of Analysis Software for Railway Vehicle Event Recorder (철도 차량용 이벤트 레코더를 위한 분석 소프트웨어 개발)

  • Han, Kwang-Rok;Jang, Dong-Wook;Kim, Kwang-Ryeol;Sohn, Surg-Eon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.6
    • /
    • pp.1245-1255
    • /
    • 2009
  • Recently, to analyze the cause of the railway accident objectively and quickly and prevent the accident, many countries are legislating for the installation of the black box what we call an event recorder, which records information about the operation of railway vehicle. Thus, the study of the event recorder has been in progress. Moreover, the analysis software that can analyze and express the stored data in the event recorder is required for the correct decision on the accident. Therefore, in this paper, we presented a design of analysis software which analyzes the data, plays the audio and video in the event recorder system. This software can quickly and accurately identify the cause of the accident and recognize the driving patterns and habits of the driver according to the operating section. In addition, by analyzing the audio and video data simultaneously in the previous accident, we expect that it is possible to prevent accidents in advance.

Improved Image Restoration Algorithm about Vehicle Camera for Corresponding of Harsh Conditions (가혹한 조건에 대응하기 위한 차량용 카메라의 개선된 영상복원 알고리즘)

  • Jang, Young-Min;Cho, Sang-Bock;Lee, Jong-Hwa
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.2
    • /
    • pp.114-123
    • /
    • 2014
  • Vehicle Black Box (Event Data Recorder EDR) only recognizes the general surrounding environments of load. In addition, general EDR is difficult to recognize the images of a sudden illumination change. It appears that the lens is being a severe distortion. Therefore, general EDR does not provide the clues of the circumstances of the accident. To solve this problem, we estimate the value of Normalized Luminance Descriptor(NLD) and Normalized Contrast Descriptor(NCD). Illumination change is corrected using Normalized Image Quality(NIQ). Second, we are corrected lens distortion using model of Field Of View(FOV) based on designed method of fisheye lens. As a result, we propose integration algorithm of two methods that correct distortions of images using each Gamma Correction and Lens Correction in parallel.

An Implementation of Automatic Transmission System of Traffic Event Information (교통이벤트 정보의 자동 전송시스템 구현)

  • Jeong, Yeong-Rae;Jang, Jae-Hoon;Kang, Seog Geun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.5
    • /
    • pp.987-994
    • /
    • 2018
  • In this paper, an automatic transmission system of traffic information is presented. Here, a traffic event is defined as an obstacle to an emergency vehicle such as an ambulance or a fire truck. When a traffic event is detected from a video recorded by a black box installed in a vehicle, the implemented system automatically transmits a proof image and corresponding information to the control center through an e-mail. For this purpose, we realize an algorithm of identifying the numbers and a character from the license plate, and an algorithm for determining the occurrence of a traffic event. To report the event, a function for automatic transmission of the text and image files through e-mail and file transfer protocol (FTP) is also appended. Therefore, if the traffic event is extended and applied to the presented system, it will be possible to establish a convenient reporting system for the violation of various traffic regulations. In addition, it will contribute to significantly reduce the number of traffic violations against the regulations.

Analysis System for Public Interest Report Video of Traffic Law Violation based on Deep Learning Algorithms (딥러닝 알고리즘 기반 교통법규 위반 공익신고 영상 분석 시스템)

  • Min-Seong Choi;Mi-Kyeong Moon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.1
    • /
    • pp.63-70
    • /
    • 2023
  • Due to the spread of high-definition black boxes and the introduction of mobile applications such as 'Smart Citizens Report' and 'Safety Report', the number of public interest reports for violations of Traffic Law has increased rapidly, resulting in shortage of police personnel to handle them. In this paper, we describe the development of a system that can automatically detect lane violations which account for the largest proportion of public interest reporting videos for violations of traffic laws, using deep learning algorithms. In this study, a method for recognizing a vehicle and a solid line object using a YOLO model and a Lanenet model, a method for tracking an object individually using a deep sort algorithm, and a method for detecting lane change violations by recognizing the overlapping range of a vehicle object's bounding box and a solid line object are described. Using this system, it is expected that the shortage of police personnel in charge will be resolved.

Optimized Hardware Design using Sobel and Median Filters for Lane Detection

  • Lee, Chang-Yong;Kim, Young-Hyung;Lee, Yong-Hwan
    • Journal of Advanced Information Technology and Convergence
    • /
    • v.9 no.1
    • /
    • pp.115-125
    • /
    • 2019
  • In this paper, the image is received from the camera and the lane is sensed. There are various ways to detect lanes. Generally, the method of detecting edges uses a lot of the Sobel edge detection and the Canny edge detection. The minimum use of multiplication and division is used when designing for the hardware configuration. The images are tested using a black box image mounted on the vehicle. Because the top of the image of the used the black box is mostly background, the calculation process is excluded. Also, to speed up, YCbCr is calculated from the image and only the data for the desired color, white and yellow lane, is obtained to detect the lane. The median filter is used to remove noise from images. Intermediate filters excel at noise rejection, but they generally take a long time to compare all values. In this paper, by using addition, the time can be shortened by obtaining and using the result value of the median filter. In case of the Sobel edge detection, the speed is faster and noise sensitive compared to the Canny edge detection. These shortcomings are constructed using complementary algorithms. It also organizes and processes data into parallel processing pipelines. To reduce the size of memory, the system does not use memory to store all data at each step, but stores it using four line buffers. Three line buffers perform mask operations, and one line buffer stores new data at the same time as the operation. Through this work, memory can use six times faster the processing speed and about 33% greater quantity than other methods presented in this paper. The target operating frequency is designed so that the system operates at 50MHz. It is possible to use 2157fps for the images of 640by360 size based on the target operating frequency, 540fps for the HD images and 240fps for the Full HD images, which can be used for most images with 30fps as well as 60fps for the images with 60fps. The maximum operating frequency can be used for larger amounts of the frame processing.

A Study on the Black Box Design using Collective Intelligence Analysis (집단지성 분석법을 활용한 블랙박스 디자인 개발 연구)

  • Lee, Hee young;Hong, Jeong Pyo;Cho, Kwang Soo
    • Science of Emotion and Sensibility
    • /
    • v.21 no.2
    • /
    • pp.101-112
    • /
    • 2018
  • This study was carried out to enhance the competitiveness of blackbox design for domestic and international companies, based on the explosive growth of the blackbox market due to development of blackbox design for vehicle accident prevention and post-treatment. In the past, the blackbox market has produced products indiscriminately to meet the ever-increasing demand of consumers. Therefore, we thought a new design method was necessary to effectively investigate the needs of rapidly changing consumers. In this study, we aimed to identify the best-selling blackbox to understand the design flow, and the optimum area for a blackbox, considering the uniqueness of associated vehicle. Based on discussion with blackbox design experts, we studied the direction of design and the problems with blackbox use, which were reflected in blackbox development. Through this research, two types of design - leading blackbox (A type) and mass production blackbox (B type) - were proposed for compatibility of the blackbox with the car. The leading type of blackbox was positioned so that it was wrapped with the room mirror hinge before the screw was fastened, in order to achieve an integrated design. Therefore, we designed an integrated form and resolved the placement problem of an adhesive blackbox. To blend, the mass production blackbox implemented material and surface processing in the same way with the car, and adopted the slide structure to automatically turn off the main body power when removing the SDcard, reflecting consumer needs. This study considers evolving consumer needs through a case study and collective intelligence and deals with implementation of the whole design process during mass production. In this study, we aimed to strengthen the competitiveness of the blackbox design based on design method and its realization.

Development of a Data-logger Classifying Dangerous Drive Behaviors (위험 운전 유형 분류 및 데이터 로거 개발)

  • Oh, Ju-Taek;Cho, Jun-Hee;Lee, Sang-Yong;Kim, Young-Sam
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.7 no.3
    • /
    • pp.15-28
    • /
    • 2008
  • According to the accident statistics published by the National Police Agency in 2006, it can be recognized that drivers' characteristics and driving behaviors are the most causational factors on the traffic accidents. At present, although many recording tools such as digital speedometer or black box are distributed in the market to meet social requests of decreasing traffic accidents and increasing safe driving behaviors, it is also true that it still lacks in obvious categories for dangerous driving types and then, the efficiency of the categories to be studied has been low. In this study, dangerous driving types are redefined. They are grouped into 7 classifications in the first level, and the seven classifications are regrouped into 16 in more detail. To verify the redefined dangerous driving types, a Data-logger is developed to receive and analyze the data that occur from the driving behaviors of the test vehicle. The developed Data-logger can be used to construct a real time warning system and safe driving management system with dangerous driving patterns based on acceleration, deceleration, Yaw rate, image data, etc.

  • PDF

Machine Learning based Traffic Light Detection and Recognition Algorithm using Shape Information (기계학습 기반의 신호등 검출과 형태적 정보를 이용한 인식 알고리즘)

  • Kim, Jung-Hwan;Kim, Sun-Kyu;Lee, Tae-Min;Lim, Yong-Jin;Lim, Joonhong
    • Journal of IKEEE
    • /
    • v.22 no.1
    • /
    • pp.46-52
    • /
    • 2018
  • The problem of traffic light detection and recognition has recently become one of the most important topics in various researches on autonomous driving. Most algorithms are based on colors to detect and recognize traffic light signals. These methods have disadvantage in that the recognition rate is lowered due to the change of the color of the traffic light, the influence of the angle, distance, and surrounding illumination environment of the image. In this paper, we propose machine learning based detection and recognition algorithm using shape information to solve these problems. Unlike the existing algorithms, the proposed algorithm detects and recognizes the traffic signals based on the morphological characteristics of the traffic lights, which is advantageous in that it is robust against the influence from the surrounding environments. Experimental results show that the recognition rate of the signal is higher than those of other color-based algorithms.

Detection of Direction Indicators on Road Surfaces Using Inverse Perspective Mapping and NN (원근투영법과 신경망을 이용한 도로노면 방향지시기호 검출 연구)

  • Kim, Jong Bae
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.4 no.4
    • /
    • pp.201-208
    • /
    • 2015
  • This paper proposes a method for detecting the direction indicator shown in the road surface efficiently from the black box system installed on the vehicle. In the proposed method, the direction indicators are detected by inverse perspective mapping(IPM) and bag of visual features(BOF)-based NN classifier. In order to apply the proposed method to real-time environments, the candidated regions of direction indicator in an image only performs IPM, and BOF-based NN is used for the classification of feature information from direction indicators. The results of applying the proposed method to the road surface direction indicators detection and recognition, the detection accuracy was presented at least about 89%, and the method presents a relatively high detection rate in the various road conditions. Thus it can be seen that the proposed method is applied to safe driving support systems available.