• 제목/요약/키워드: Vehicle Air Condition

검색결과 160건 처리시간 0.023초

수치해석을 통한 자동차 전면유리 제상성능 제어인자 연구 (Numerical Study on Control Factors of Defrosting Performance for Automobile Windshield Glass in Winter)

  • 윤영묵;;이금배;전용두
    • 설비공학논문집
    • /
    • 제20권12호
    • /
    • pp.789-794
    • /
    • 2008
  • Recently, much attention has been paid in the field of defrosting because clear windshield in vehicle without effecting the thermal comfort is realized essentially. Then in winter, defrosting performance is one of the important factors in vehicle design to make certain driver's view. In this study, the velocity profile, temperature distribution and frost melting pattern on the windshield screen have been predicted in three dimensional geometry of an automobile interior. Numerical analyses predict a detailed description of fluid flow and temperature patterns on the inside windshield screen, utilizing the flow through defroster nozzle. Numerical prediction established a good defrosting performance with the standard distance ratio and the defroster nozzle angle ranging from $30^{\circ}$ to $40^{\circ}$, which satisfy the condition of National Highway Traffic Safety Administration (NHTSA) completely.

차량용 유도전력 집전 장치의 특성해석 (The Modeling of inductive power collector for vehicle)

  • 한경희;이병송;김도원;백수현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 B
    • /
    • pp.1610-1612
    • /
    • 2005
  • In this paper, the inductive power collector using electromagnetic induction for vehicle such as the PRT(Personal Rapid Transit) system is suggested and some ideas for power collector design to improve the power transfer performance are presented. The proposed the inductive power collector is used for the PRT system, which has a large air-gap and demands a large electrical power capability. But, low output power is generated due to a loosely coupled characteristic of the large air-gap. Therefore, double layer construction of secondary winding, which was divided in half to increase both output current and output voltage was suggested. Also, a model of power collector and parallel winding structure and a model of concentration/decentralization winding are presented, in addition, the performance of inductive power collector to alignment condition between the primary power line and the inductive power transformer was verified by computer simulation of 2kW model.

  • PDF

원격측정용 다기능 PCM 데이터 저장장치 개발 (Developement of Multifunction PCM Recorder for Telemetry System)

  • 김대연;김재민;고광렬;이상범
    • 한국군사과학기술학회지
    • /
    • 제26권2호
    • /
    • pp.171-178
    • /
    • 2023
  • PCM data is result of air-vehicle flight test, this data is distributed for each engineers to analyze its condition. Since line-of-sight between the air-vehicle and the ground receiver cannot always be secured, remote PCM data recording system was claimed to be required. In this paper multi-function PCM data recorder has been described. This PCM data recorder was intended to place on inside of flight object. It can record about two hours in 32 GB SD card with maximum 7 Mbps data rate. RS-422/485 and RJ-45 interface enhanced accessibility for users. 5 V and 1 A power consumption and 19.5 mm × 152.5 mm × 102.3 mm allow to connect with mobile PCM devices. It acquired more than 190-minutes data in 12-times flight test. Also, it achieved military standard environmental test MIL-STD-810G to prove its stability and solidness.

연료전지 자동차용 스택 시스템의 열적 성능 특성에 관한 수치적 연구 (Numerical study on the thermal performance characteristics of the stack system for FCEV)

  • 이호성;이무연;원종필
    • 한국산학기술학회논문지
    • /
    • 제16권6호
    • /
    • pp.3708-3713
    • /
    • 2015
  • 본 연구의 목적은 연료전지 자동차의 스택 시스템의 열적 특성을 파악하기 위하여 상용 수치 해석 프로그램을 이용하여 열전달 성능을 해석적으로 고찰하였다. 이를 위하여 연료전지 자동차가 일반도로 및 등판도로 등 주행 특성에 따른 스택 열관리 시스템의 냉각 특성과 에어컨의 작동 여부 등 운전 특성에 따른 스택 열관리 시스템의 냉각 특성을 고찰하였다. 스택 라디에이터로 유입되는 공기 유속이 증가함에 따라 모든 냉각수 유량조건에서 열전달 성능은 향상되었다. 공기 유속이 2 m/s에서 10 m/s로 증가함에 따라 스택 라디에이터의 열전달 성능은 냉각수 유량 20 l/min에서 105.3% 증가하였고, 냉각수 유량 120 l/min에서 221.3% 증가하였다. 스택 라디에이터는 가혹조건인 등판 각도 8% 및 속도 50 km/h에서 냉각수 입구 온도차 $9.45^{\circ}C$로 일반조건인 등판 각도 0% 및 속도 120 km/h에서 냉각수 입구 온도차인 $5.1^{\circ}C$보다 85.3% 증가했다. 또한, 연료전지 자동차가 가혹조건인 등판 주행시 에어컨 시스템을 작동할 경우 스택의 안정적 작동을 허용하는 한계 온도인 $70^{\circ}C$를 초과할 수 있다.

부압을 이용한 배기 흡입형 매연여과장치에 대한 실험적 연구 (An Experimental Study on the Smoke Filtration System of Suction Type of Exhaustic Gas using Vaccum)

  • 이한성;기시우;고대권
    • 동력기계공학회지
    • /
    • 제15권6호
    • /
    • pp.16-21
    • /
    • 2011
  • Over the past years, many research works have been carried out to investigate the factors which govern the performance of diesel engine. The air pollutant emission from the diesel engine is still a significant environmental concern in many countries. In the present study, new system of smoke filtration of diesel engine is proposed. This new system is using vacuum equipment and filter for capture smoke. To verification new system experiments are performed at diesel vehicle and engine dynamometer. As a result it is founded that smoke is decreased of 67% at vehicle test and decrease of 45.2% at full load condition of engine dynamometer test.

자동차용 CO2 에어컨 시스템의 성능 특성에 관한 실험적 연구 (Experimental Study on the Performance Characteristics of a CO2 Air-conditioning System for Vehicles)

  • 이대웅
    • 한국자동차공학회논문집
    • /
    • 제23권1호
    • /
    • pp.18-24
    • /
    • 2015
  • In this study, a $CO_2$ air-conditioning system was investigated with different types of electrically driven compressors, parallel flow type gas cooler, four-pass type evaporator, internal heat exchanger integrated with accumulator, and electric expansion valve. The experimental study was conducted under various operating conditions (ie., different rotational compressor speeds, air inlet temperatures and air velocity coming into heat exchangers). The experimental results showed the cooling capacity was 3.5kW at $35^{\circ}C$ ambient temperature when the vehicle was idle (ie., the worst condition for cooling off the gas cooler). In terms of performance effect of the compressor, the e-RP model had a slightly better cooling capacity and coefficient of performance than the e-GR model under the same test conditions. An experimental equation for optimum cooling-performance control was also suggested based on the results. A high-pressure control algorithm for the super critical cycle was determined to achieve both maximum cooling performance and efficient energy consumption. The results from the experimental equation coincided with those of previous experimental studies.

50KW 터보제너레이터용 가스터빈 엔진의 설계점/ 탈설계/과도성능해석 (On/Off-Design/Transient Analysis of a 50KW Turbogenerator Gas Turbine Engine)

  • 김수용;박무룡;조수용
    • 연구논문집
    • /
    • 통권27호
    • /
    • pp.87-99
    • /
    • 1997
  • Present paper describes on/off design performance of a 50KW turbogenerator gas turbine engine for hybrid vehicle application. For optimum design point selection, relevant parameter study is carried out. The turbogenerator gas turbine engine for a hybrid vehicle is expected to be designed for maximum fuel economy, ultra low emissions, and very low cost. Compressor, combustor, turbine, and permanent-magnet generator will be mounted on a single high speed (82,000 rpm) shaft that will be supported on air bearings. As the generator is built into the shaft, gearbox and other moving parts become unnecessary and thus will increase the system's reliability and reduce the manufacturing cost. The engine has a radial compressor and turbine with design point pressure ratio of 4.0. This pressure ratio was set based on calculation of specific fuel consumption and specific power variation with pressure ratio. For the given turbine inlet temperature, a rather conservative value of $1100^\circK$ was selected. Designed mass flow rate was 0.5 kg/sec. Parametric study of the cycle indicates that specific work and efficiency increase at a given pressure ratio and turbine inlet temperature. Off design analysis shows that the gas turbine system reaches self operating condition at N/$N_{DP}$ = 0.53. Bleeding air for turbine stator cooling is omitted considering low TIT and for a simple geometric structure. Various engine performance simulations including, ambient temperature influence, surging at part load condition. Transient analysis were performed to secure the optimum engine operating characteristics. Surge margin throughout the performance analysis were maintained to be over 80% approximately. Validation of present results are yet to be seen as the performance tests are scheduled by the end of 1998 for comparison.

  • PDF

도로터널 내 수소차 누출시나리오에 따른 가연영역에 대한 위험성분석 연구 (Risk analysis of flammable range according to hydrogen vehicle leakage scenario in road tunnel)

  • 이후영;류지오
    • 한국터널지하공간학회 논문집
    • /
    • 제24권4호
    • /
    • pp.305-316
    • /
    • 2022
  • 화석연료의 고갈과 환경문제의 대안으로 수소에너지가 부각되고 있으며, 자동차 산업에서도 수소차의 보급이 증가하고 있다. 그러나 수소는 가연농도 범위가 4~75%로 넓은 가연영역을 가지고 있어 수소차 사고 시 안전에 대한 우려가 높은 실정이다. 특히, 터널이나 지하주차장과 같은 반밀폐 공간에서는 수소누출에 따른 화재나 폭발이 대형사고를 유발할 가능성이 높기 때문에 수소누출에 따른 가연영역 분석을 통해 수소 안전성에 대한 검토가 필요한 실정이다. 이에 본 연구에서는 표준단면의 도로터널에서 수소차량의 수소 누출조건과 터널 내 풍속에 따른 수소농도 해석을 수행하여 터널 내 풍속이 가연영역에 미치는 영향을 검토하였다. 수소의 누출조건은 1개의 탱크와 3개의 탱크가 통시에 TPRD를 통해 누출되는 조건과 대형크랙이 발생하여 누출하는 조건으로 하였으며, 터널 내 풍속은 0, 1, 2.5, 4.0 m/s를 고려하였다. 가연영역에 대한 검토결과, 1 m/s 이상의 풍속이 존재하는 경우에는 풍속이 없는 경우와 비교하여 최대 25%수준까지 감소하는 것으로 나타나고 있으며, 풍속증가에 따른 가연영역의 감소효과는 거의 없는 것으로 나타나고 있다. 특히 대형크랙이 발생하여 약 2.5초 만에 완전히 누출되는 경우에는 풍속이 증가하면 가연영역이 약간 증가하는 것으로 나타나고 있다. 또한 하향 분출되는 경우에 풍속이 작은 차량하부 영역에 수소가스가 상당히 긴 시간동안 잔류하는 것으로 분석되었다.

WLTP 주행모드에서의 경유차 입자상물질 개수 배출 특성 (Measuring Particle Number from Light-duty Diesel Vehicles in WLTP Driving Cycle)

  • 박준홍;이종태;김정수;김선문;안근환
    • 한국분무공학회지
    • /
    • 제18권3호
    • /
    • pp.155-160
    • /
    • 2013
  • Worldwide harmonized light-duty vehicle test procedure (WLTP) for emission certification has been developed in WP.29 forum in UN ECE since 2007. The test procedure is expected to be applied to Korean light-duty diesel vehicles at the same time of adoption in Europe. The air pollutant emissions from light-duty vehicles have been regulated with weight per distance travelled which means the driving cycles can affect the results. The six Euro-5 light-duty diesel vehicles including sedan, SUV and truck have been tested with WLTP, NEDC which is used for emission certification for light-duty diesel vehicles, and CVS-75 to estimate how much particle number emission can be affected by different driving cycles. The averaged particle number emissions have not shown statistically meaningful difference. The maximum particle number emission have been found in Low speed phase of WLTP which is mainly caused by cooled engine conditions. The amount of particle number emission in cooled engine condition is much different as test vehicles. It means different technical solution is required in this aspect to cope with WLTP driving cycle.

고고도 무인기 내부의 공랭식 PEMFC 열전달 전산 해석 연구 (Numerical Study on Heat Transfer of Air-cooling PEMFC in HALE UAV)

  • 송명호;김경연
    • 한국수소및신에너지학회논문집
    • /
    • 제28권2호
    • /
    • pp.150-155
    • /
    • 2017
  • Proper cooling of PEM fuel cell stack is essential for the high-performance operation of fuel cell system. Insufficient cooling of the stack can cause significant damage to components due to overheating and also can decrease cell performance by dehydration of the polymer electrolyte. In the present study, we performed a computational analysis to assess the condition of the cooling system to secure the proper temperature in fuel cell stack system for high altitude long endurance (HALE) unmanned aerial vehicle (UAV).