• Title/Summary/Keyword: Vehicle Active Suspension

Search Result 152, Processing Time 0.023 seconds

Intelligence Control Characteristics of a Digital Damper (디지털 댐퍼의 지능제어 특성)

  • Song, Joon-Ho;Lee, Yuk-Hyung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.5 no.3
    • /
    • pp.5-10
    • /
    • 2006
  • The objective of this paper is to investigate the Intelligence control characteristics of a digital damper. This paper deals with a two-degree-of-freedom suspension using the damper with ER fluid for a quarter vehicle system. The control law for semi-active suspensions modeled in this study is developed using passive and ANFIS control method. Computer simulation results show that the semi-active suspension with ER damper has good performances of ride quality.

  • PDF

Nonlinear adaptive control of a quarter car active suspension (1/4 차 능동현가계의 비선형 적응제어)

  • Kim, Eung-Seok
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.4
    • /
    • pp.582-589
    • /
    • 1996
  • In this paper, an adaptive control problem of a hydraulic actuator for vehicle active suspension controller is divided into two parts: the inner loop controller and the outer loop controller. Inner loop controller, which is a nonlinear adaptive controller, is designed to control the force generated by the nonlinear hydraulic actuator acting under the effects of Coulomb friction. For simplicity of designing a nonlinear controller, the spool valve dynamics of a hydraulic actuator is reduced using a singular perturbation technique. The estimation error signal used to an indirect parameter adaptation is calculated without a regressor filtering. The absolute velocity of a sprung mass will be damped down by its negatively proportional term(sky-hook damper) adopted as an outer loop controller. Simulation results are presented to show the importance of controlling the actuator force and the validity of the proposed adaptive controller. (author). refs., figs. tab.

  • PDF

Active Dynamic behavior Control of Vehicle by Using Semi-intelligent Suspension System (반지능형 현가시스템에 의한 차량의 능동적인 동적거동제어)

  • 김대원;배준영;신중호
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.6
    • /
    • pp.15-21
    • /
    • 1998
  • Mostly a ride comfort and handling performance of vehicle is influenced by dynamic behavior control of vehicle. We are focusing on development of a semi-intelligent suspension system with continuously variable damper(HS-SH type). only using absolute velocity of sprung mass without using the relative velocity besides having lower system prices and a little energy requirement. In this paper, the system is realized in consideration to control strategy (sky-hook control, hybrid filter, etc.) and has been proved to have improvement of behavior control of vehicle by quarter car and Vehicle test, respectively.

  • PDF

A Study on the Design and Performance of Continuously Variable Suspension System using Electro-Rheological Fluids (전기변성유체를 이용한 연속가변 현수장치 시스템의 디자인 및 성능에 관한 연구)

  • 장문석;김수태
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.543-546
    • /
    • 1997
  • The purpose of this study is to investigate the ERSU(Electr0-Rheological Suspension IJnit) and some progress of damping force characteristic of a ERSU. This paper describes overall construction of th'e system design and the manufacturing of ERSU. A model of the ERSU is made by using electric field dependent on Bingham properities of ER fluid. In this paper. the ERSU is designed and manufactured for a light ground tracked vehicle. From the results, it is shown that the damping performance of ERSLJ is better than that of a passive suspension unit. This experimental study might be very useful for the simulat~on and the design of semi-active suspension units.

  • PDF

Dynamic Characteristics Modeling for A MR Damper using Artifical Neural Network (인공신경망을 이용한 MR댐퍼의 동특성 모델링)

  • 백운경;이종석;손정현
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.3
    • /
    • pp.170-176
    • /
    • 2004
  • MR dampers show highly nonlinear and histeretic dynamic behavior. Therefore, for a vehicle dynamic simulation with MR dampers, this dynamic characteristics should be accurately reflected in the damper model. In this paper, an artificial neural network technique was developed for modeling MR dampers. This MR damper model was successfully verified through a random input forcing test. This MR damper model can be used for semi-active suspension vehicle dynamics and control simulations with practical accuracy.

High Tunable Control Algorithm for Semi-active Suspension by a Normal Type CDC Damper (연속 가변 댐퍼에 의한 반능동 현가장치의 고 자유도 제어기)

  • Choi, Ju-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.11
    • /
    • pp.1096-1103
    • /
    • 2010
  • This paper proposes CDC (Continuous Damping Control) algorithm and verifies in multi-body dynamic vehicle. In order to distinguish a road profile on driving, waviness calculated by the filtered vertical-accelerations of sprung and unsprung masses is introduced. Sky-hook control is used at a low waviness road and constant damping level control is used at a high waviness road, where the hard damping level is determined by waviness, roll rate, acceleration, and deceleration. The damping levels of ride, anti-roll, anti-squat, and anti-dive modules are calculated by tuning parameters which is dependent upon vehicle velocity. Therefore this high tunable algorithm is useful to improve the ride and handling performance under various driving conditions. In the simulations, tire and dampers are modelled by SWIFT (Short Wavelength Intermediate Frequency Tire) model and 1st order delay model, and results are compared with conventional damper's.

Control of Semi-active Suspensions for Passenger Cars(II) (승용차용 반능동 현가시스템의 제어)

  • Jo, Yeong-Wan;Lee, Gyeong-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.12
    • /
    • pp.2187-2195
    • /
    • 1997
  • A semi-active suspension test system was designed and built for the experimental study. Vehicle parameters were estimated through tests and a quarter-car model was validated by comparing computer simulation results and laboratory test results. Alternative semi-active suspension control laws have been tested using the test system. Modulable damper used in this study is a "reverse" damper with 42 states which is controlled by a stepper motor. Experimental results have shown that semi-active suspensions have potential to improve ride quality of automobiles.tomobiles.

THE MECHATRONIC VEHICLE CORNER OF DARMSTADT UNIVERSITY OF TECHNOLOGY-INTERACTION AND COOPERATION Of A SENSOR TIRE, NEW LOW-ENERGY DISC BRAKE AND SMART WHEEL SUSPENSION

  • Bert Breuer;Michael Barz;Karlheinz Bill;Steffen Gruber;Martin Semsch;Thomas Strothjohann;Chungyang Xie
    • International Journal of Automotive Technology
    • /
    • v.3 no.2
    • /
    • pp.63-70
    • /
    • 2002
  • Future on-board vehicle control systems can be further improved through new types of mechatronic systems. In particular, these systems' capacities for interaction enhance safety, comfort and economic viability. The Automotive Engineering Department (fzd) of darmstadt University of Technology is engaged in research of the mechatronic vehicle corner, which consists of three subsystems: sensor tire, electrically actuated wheel brake and smart suspension. By intercommunication of these three systems, the brake controller receives direct, fast and permanent information about dynamic events in the tire contact area provided by the tire sensor as valuable control input. This allows to control operation conditions of each wheel brake. The information provided by the tire sensor for example help to distinguish between staightline driving and cornering as well as to determine $\mu$-split conditions. In conjunction with current information of dynamic wheel loads, tire pressures and friction tyre/road, the ideal brake force distribution can be achieved. Alike through integration of adaptive suspension bushings, elastokinematic behaviour and wheel positions can be adapted to manoeuver-oriented requirements.