• Title/Summary/Keyword: Vehicle/Tire

Search Result 391, Processing Time 0.025 seconds

design vehicle tire wear and Abnormal wear check system (타이어 마모도 및 이상마모 확인 시스템 설계)

  • Baek, Sung-hyun;Jang, Jong-wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.507-510
    • /
    • 2014
  • 타이어의 마모는 여러 가지가 있을 수 있지만 일반적으로는 일반 마모와 이상마모로 두가지로 나뉠 것이다. 일반적인 마모는 자동차 주행 중의 마모로 적당한 주행거리에 교체 하면된다 하지만 이상마모는 일반적인 마모와 달리 각 타이어가 따로 마모가 되거나 타이어 일부분이 마모가 되는 것이다. 그래서 본 논문에서는 이상마모와 타이어의 마모도를 체크 하고자 복수개의 레이저 센서를 이용하여 각 타이어마다 이상마모와 타이어의 마모도를 체크 하는 시스템을 개발하여 주관적인 판단을 극복하고 객관적이고 정확한 판단을 내릴 것이다.

  • PDF

Road Noise Estimation Based on Transfer Path Analysis Using a Simplified Tire Vibration Transfer Model (단순화된 타이어 진동전달 모델의 전달경로분석법을 이용한 로드노이즈 예측기술 개발)

  • Shin, Taejin;Park, Jongho;Lee, Sangkwon;Shin, Gwangsoo;Hwang, Sungwook
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.2
    • /
    • pp.176-184
    • /
    • 2013
  • Quantification of road noise is a challenging issue in the development of tire noise since its transfer paths are complicated. In this paper, a simplified model to estimate the road noise is developed. Transfer path of the model is from wheel to interior. The method uses the wheel excitation force estimated throughout inverse method. In inversion procedure, the Tikhonov regularization method is used to reduce the inversion error. To estimate the wheel excitation force, the vibration of knuckle is measured and transfer function between knuckle and wheel center is also measured. The wheel excitation force is estimated by using the measured knuckle vibration and the inversed transfer function. Finally interior noise due to wheel force is estimated by multiplying wheel excitation force in the vibro-acoustic transfer function. This vibro-acoustic transfer function is obtained throughout measurement. The proposed method is validated by using cleat excitation method. Finally, it is applied to the estimation of interior noise of the vehicle with different types of tires during driving test.

Characterization of Coarse, Fine, and Ultrafine Particles Generated from the Interaction between the Tire and the Road Pavement (차량 주행 시 타이어와 도로의 경계면에서 발생하는 조대입자, 미세입자 및 초미세입자의 특성 연구)

  • Kwak, Jihyun;Lee, Sunyoup;Lee, Seokhwan
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.5
    • /
    • pp.656-667
    • /
    • 2013
  • The non-exhaust coarse, fine, and ultrafine particles were characterized by on-road driving measurements using a mobile sampling system. The on-road driving measurements under constant speed driving revealed that mass concentrations of roadway particles (RWPs) were distributed mainly in a size range of 2~3 ${\mu}m$ and slightly increased with increasing vehicle speed. Under braking conditions, the mode diameters of the particles were generally similar with those obtained under constant speed conditions. However, the PM concentrations emitted during braking condition were significantly higher than those produced under normal driving conditions. Higher number concentrations of ultrafine particles smaller than 70 nm were observed during braking conditions, and the number concentration of particles sampled 90 mm above the pavement was 6 times higher than that obtained 40 mm above the pavement. Under cornering conditions, the number concentrations of RWPs sampled 40 mm above the pavement surface were higher than those sampled 90 mm above the pavement. This might be explained that a nucleation burst of a lot of vapor evaporated from the interaction between the tire and the road pavement under braking conditions continuously occurred by cooling during the transport to the sampling height 90 mm, while, for the case of cornering situations, the ultrafine particle formation was completed before the transport to the sampling height of 40 mm.

Physio-Ecological Characteristics of Roadside Tree by Difference under Zoning of Urban Districts in Cheong-ju City -Focused on the Ginkgo biloba and Platanus orientalis- (청주시 용도지역별 가로수의 생리.생태학적 특성에 관한 연구 -Ginkgo biloba와 Platanus orientalis를 중심으로-)

  • In, Hyoung-Min;Ju, Jin-Hee;Yoon, Young-Han
    • Journal of Environmental Science International
    • /
    • v.19 no.2
    • /
    • pp.229-236
    • /
    • 2010
  • As air pollution has emerged as one of the most pressing urban environmental concerns, many studies have investigated the influence of air pollutants(ex: $O^3$, $NO^2$, $SO^2$, Acid rain, etc.) on roadside trees and urban grove. In Korea, population density started to increase since the industrialization. Since dense population aggravates our living conditions, it's very important for us to preserve and keep a lively and refreshing nature in order to live with green nature in harmony under the current artificial environment-dominating world. In metropolitan cities, the production of pollutants increases in proportion to population growth. The vehicle exhaust gas and air pollutants from cooling and heating systems have been the major causes of acid rain. Furthermore, tire particles which are naturally produced by tire wearing on roads and other toxic substances in exhaust gas have caused a problem in human health directly and indirectly. In fact, a lot of studies have analyzed air pollution, roadside trees and plants in Korea. However, they are mostly limited to covering the influence of air pollution on the growth of plants. No paper has clearly explained why air pollution-resistant or-vulnerable species has shown different reactions yet. Even though a lot of urban roadside trees have died or stopped to grow from time to time, this kind of problem has not been properly examined. This paper is aimed to comparatively analyze physio-ecological characteristic such as photosynthesis, chlorophyll contents, soil volume water figure out their relationship with environmental factors against the expanding roadside trees in Cheong-ju, and provide basic data for management of roadside trees and elaboration of urban environment preservation policies.

A Study on Zero-Condition of ASAE for Estimating Slip-Traction Relationship of Off-Road Vehicles (오프로드차량의 슬립-견인력 관계의 평가에 사용되는 ASAE 제로조건에 관한 연구)

  • 박원엽;이규승;오만수;박준걸
    • Journal of Biosystems Engineering
    • /
    • v.27 no.6
    • /
    • pp.501-512
    • /
    • 2002
  • Traction performance of off-road vehicles is estimated using slip-traction relationships Two zero condition accepted by ASAE have been used widely to obtain the slip-traction relationships of off-road vehicles. This study was carried out using the soil bin systems to investigate the characteristic of slip-traction curves obtained using two zero conditions defined by ASAE. which are driving and driven zero condition, and to present disadvantage of slip-traction relationship based on two zero conditions of ASAE. The results of this study are summarized as follows : 1. For the driving zero condition, the curve of slip-traction relationship shows some issues. The first question is that the slip is zero when the traction is zero. The second question is that the value of slip is smaller than that of corresponding real slip, as the rolling radius decreased f3r the setting zero condition with driving wheel. 2. For the driven zero condition. slip occurs when the traction is zero, which is more realistic results than driving zero condition. But when a zero condition is set, skid occurs and this result increased the rolling radius of tire and increased slip value f3r the specific traction value of whole slip range. This kind of trend was getting bigger as the soil is softer, or the tire inflation pressure is higher. 3. From the results of this study, it was found that slip-traction relationship obtained by two zero conditions of ASAE is not realistic in estimating the traction performance of off-road vehicles. And also slip-traction relationship obtained for the same experimental condition showed different result in accordance with chosen zero condition,

A Study of Skid Resistance Characteristics by Deicing Chemicals (제설제 사용으로 인한 노면 미끄럼저항 특성 연구)

  • Lee, Seung Woo;Woo, Chang Wan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5D
    • /
    • pp.813-819
    • /
    • 2006
  • Skid Resistance is a index to represent the friction between tire and road surface, which influences driving safety. Skid resistance varies with the conditions of tire, abrasion of road surface, vehicle speed, drying, wet and freezing condition of road surfaces. Especially, freezing occurs when temperature drops below $0^{\circ}C$ followed by snow or rain causes decrease of skid resistance. To recover the decreased skid resistance deicing work is applied. As a results of deicing works, freezing condition is changed into wet condition. However the wet road surfaces containing the remaining deicings agents may not show the skid resistance of normal wet condition. In this study, skid resistances in the condition of freezing, deicing process and deicing agents remained after snow-removal are evaluated. The test results, skid resistance recover quickly when Pre-wetted salt spreading and NaCl was used as deicing method. Skid resistance of Deicing agents remained on the road surface showed that concrete is higher than asphalt. superior effect. Recovery rate of skid resistance by comparison wet condition is 54~80%.

Development of simulation model of an electric all-wheel-drive vehicle for agricultural work

  • Min Jong Park;Hyeon Ho Jeon;Seung Yun Baek;Seung Min Baek;Dong Il Kang;Seung Jin Ma;Yong Joo Kim
    • Korean Journal of Agricultural Science
    • /
    • v.51 no.3
    • /
    • pp.315-329
    • /
    • 2024
  • This study was conducted for simulation model development of an electric all-wheel-drive vehicle to adapt the agricultural machinery. Data measurement system was installed on a four-wheel electric driven vehicle using proximity sensor, torque-meter, global positioning system (GPS) and data acquisition (DAQ) device. Axle torque and rotational speed were measured using a torque-meter and a proximity sensor. Driving test was performed on an upland field at a speed of 7 km·h-1. Simulation model was developed using a multi-body dynamics software, and tire properties were measured and calculated to reflect the similar road conditions. Measured and simulated data were compared to validate the developed simulation model performance, and axle rotational speed was selected as simulation input data and axle torque and power were selected as simulation output data. As a result of driving performance, an average axle rotational speed was 115 rpm for each wheel. Average axle torque and power were 4.50, 4.21, 4.04, and 3.22 Nm and 53.42, 50.56, 47.34, and 38.07 W on front left, front right, rear left, and rear right wheel, respectively. As a result of simulation driving, average axle torque and power were 4.51, 3.9, 4.16, and 3.32 Nm and 55.79, 48.11, 51.62, and 41.2 W on front left, front right, rear left, and rear right wheel, respectively. Absolute error of axle torque was calculated as 0.22, 7.36, 2.97, and 3.11% on front left, front right, rear left, rear right wheel, respectively, and absolute error of axle power was calculated as 4.44, 4.85, 9.04, and 8.22% on front left, front right, rear left, and rear right wheel, respectively. As a result of absolute error, it was shown that developed simulation model can be used for driving performance prediction of electric driven vehicle. Only straight driving was considered in this study, and various road and driving conditions would be considered in future study.

Stress Distribution in Concrete Pavements under Multi-Axle Vehicle Loads Obtained Using Transformed Field Domain Analysis (변환영역 해석법을 통한 콘크리트 도로 포장의 다축 차량 하중에 대한 응력 분포 분석)

  • Kim, Seong-Min;Shim, Jae-Soo;Park, Hee-Beom
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.5 s.95
    • /
    • pp.695-702
    • /
    • 2006
  • The stress distribution and the critical stresses in concrete pavements were analyzed using formulations in the transformed field domains when dual-wheel single-, tandem-, and tridem-axle loads were applied. First the accuracy of the transformed field domain analysis results was verified by comparing with the finite element analysis results. Then, the stress distribution along the longitudinal and transverse directions was investigated, and the effects of slab thickness, concrete elastic modulus, and foundation stiffness on the stress distribution were studied. The effect of the tire contact pressure related to the tire print area was also studied, and the location of the critical stress occurrence in concrete pavements was finally investigated. From this study, it was found that the critical concrete stress due to multi-axle loads became larger as the concrete elastic modulus increased, the slab thickness increased, and the foundation stiffness decreased. The number of axles did not tend to affect the critical stress ratio except for a small foundation stiffness value with which the critical stress ratio became significantly larger as the number of axles increased. The critical stress location in the transverse direction tended to move into the interior as the tire contact pressure increased, the concrete elastic modulus increased, the slab thickness increased, and the foundation stiffness decreased. The critical stress location in the longitudinal direction was under the axle for single- and tandem-axle loads, but for tridem-axle loads, it tended to move under the middle axle from the outer axles as the concrete elastic modulus and/or slab thickness increased and the foundation stiffness decreased.

Integrated Chassis Control System with Fail Safety Using Optimum Yaw Moment Distribution (최적 요모멘트 분배 방법을 이용한 고장 안전 통합 섀시 제어기 설계)

  • Yim, Seongjin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.3
    • /
    • pp.315-321
    • /
    • 2014
  • This paper presents an integrated chassis control system with fail safety using optimum yaw moment distribution for a vehicle with steer-by-wire and brake-by-wire devices. The proposed system has two-level structure: upper- and lower-level controllers. In the upper-level controller, the control yaw moment is computed with sliding mode control theory. In the lower-level controller, the control yaw moment is distributed into the tire forces of active front steering(AFS) and electronic stability control(ESC) with the weighted pseudo-inverse based control allocation(WPCA) method. By setting the variable weights in WPCA, it is possible to take the sensor/actuator failure into account. In this framework, it is necessary to optimize the variables weights in order to enhance the yaw moment distribution. For this purpose, simulation-based tuning is proposed. To show the effectiveness of the proposed method, simulations are conducted on a vehicle simulation package, CarSim.

Design of Near-Minimum Time Path Planning Algorithm for Autonomous Driving (무인 자율 주행을 위한 최단 시간 경로계획 알고리즘 설계)

  • Kim, Dongwook;Kim, Hakgu;Yi, Kyongsu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.5
    • /
    • pp.609-617
    • /
    • 2013
  • This paper presents a near-minimum time path planning algorithm for autonomous driving. The problem of near-minimum time path planning is an optimization problem in which it is necessary to take into account not only the geometry of the circuit but also the dynamics of the vehicle. The path planning algorithm consists of a candidate path generation and a velocity optimization algorithm. The candidate path generation algorithm calculates the compromises between the shortest path and the path that allows the highest speeds to be achieved. The velocity optimization algorithm calculates the lap time of each candidate considering the vehicle driving performance and tire friction limit. By using the calculated path and velocity of each candidate, we calculate the lap times and search for a near-minimum time path. The proposed algorithm was evaluated via computer simulation using CarSim and Matlab/Simulink.