• Title/Summary/Keyword: Vehicle/Tire

Search Result 391, Processing Time 0.022 seconds

Development of a Load Measurement System for Vehicles using Tire Pressure System Technology (타이어 공기압 시스템 기술을 사용한 차량의 적재중량 측정 시스템 개발)

  • Park, Jae-Hyun;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.24 no.1
    • /
    • pp.33-39
    • /
    • 2020
  • In this paper, we propose the design technique of the vehicle's load weight measuring system using tire pressure, which is one of the physical elements of tires. The proposed technique consists of four processes: noise correction by load and vibration, gas flow correction, data mixer and weight conversion. Noise correction by load and vibration eliminates noise that increases the tire's internal pressure due to external shocks and vibrations produced by the vehicle while it is in motion. In the gas flow correction process, the noise of the internal pressure of the tire is increased due to the temperature rise of the ground with respect to the data obtained through the noise correction process due to the load and vibration. In the data mixer process, the load and pressure on the tolerances the empty, median and the full load are classified according to the change in pressure of the tire that is delivered perpendicular to the tire in the event of cargo. In the weight conversion process, weight is expressed by weight through weight conversion algorithms using noise correction results by load and vibration and gas flow correction. The weight conversion algorithm calculates the weight conversion factor, which is the slope of the linear function with respect to the load and pressure change, and converts the weight. In order to evaluate the accuracy of the loading weight measurement system of the vehicle using the tire pneumatic system technique proposed in this paper, we propose the design technique of the vehicle's load weight measuring system using tire pressure, which is one of the physical elements of tires.. Noise correction results by load and vibration and gas flow data correction results showed reliable results. In addition, repeated weight precision test showed better weight accuracy than the standard value of 90% of domestic companies.

Vehicle Longitudinal Brake Control with Wheel Slip and Antilock Control (바퀴 슬립과 잠김 방지 제어를 고려한 차량의 종렬 브레이크 제어)

  • Liang Hong;Choi Yong-Ho;Chong Kil-To
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.6
    • /
    • pp.502-509
    • /
    • 2005
  • In this paper, a 4-wheel vehicle model including the effects of tire slip was considered, along with variable parameter sliding control, in order to improve the performance of the vehicle longitudinal response. The variable sliding parameter is made to be proportional to the square root of the pressure derivative at the wheel, in order to compensate for large pressure changes in the brake cylinder. A typical tire force-relative slip curve for dry road conditions was used to generate an analytical tire force-relative slip function, and an antilock sliding control process based on the analytical tire force-relative slip function was used. A retrofitted brake system, with the pushrod force as the end control parameter, was employed, and an average decay function was used to suppress the simulation oscillations. The simulation results indicate that the velocity and spacing errors were slightly larger than those obtained when the wheel slip effect was not considered, that the spacing errors of the lead and follower were insensitive to the adhesion coefficient up to the critical wheel slip value, and that the limit for the antilock control under non-constant adhesion road conditions was determined by the minimum value of the equivalent adhesion coefficient.

Variable Parameter Sliding Controller Design for Vehicle Brake with Wheel Slip

  • Liang, Hong;Chong, Kil-To
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.11
    • /
    • pp.1801-1812
    • /
    • 2006
  • In this paper, a 4-wheel vehicle model including the effects of tire slip was considered, along with variable parameter sliding control, pushrod force as the end control parameter, and an antilock sliding control, in order to improve the performance of the vehicle longitudinal response. The variable sliding parameter is made to be proportional to the square root of the pressure derivative at the wheel, in order to compensate for large pressure changes in the brake cylinder. A typical tire force-relative slip curve for dry road conditions was used to generate an analytical tire force-relative slip function, and an antilock sliding control process based on the analytical tire force-relative slip function was used. A retrofitted brake system, with the pushrod force as the end control parameter, was employed, and an average decay function was used to suppress the simulation oscillations. Simulation results indicate that the velocity and spacing errors were slightly larger than the results that without considering wheel slip effect, the spacing errors of the lead and follower were insensitive to the adhesion coefficient up to the critical wheel slip value, and the limit for the antilock control on non-constant adhesion road condition was determined by the minimum of the equivalent adhesion coefficient.

Development of Vehicle Classification Method using Discriminant Function Based on Detection of Dual Tire (주행차량의 복륜 여부 판정을 통한 차종분류 방안)

  • Oh, Jusam
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.1D
    • /
    • pp.45-51
    • /
    • 2010
  • Traffic volume is essential data for traffic control or maintenance and rehabilitation planning. The volume especially with respect to the type of vehicles can facilitate to those road operations. In this research, a method for vehicle classification was developed using skewed sensors which can generate traffic signatures. In order to characterize vehicle types, the method investigates whether the second axle of each vehicle consists of dual tires. The presence of dual tire is determined by the discriminate function obtained from discriminant analysis. The validation using 1,878 vehicles recorded from a highway using a CCTV camera indicated significantly accurate results: 96.92% for class 1, 82.91% for class 3 and 79.13% for class 4.

A Study on the Full Active 4WS Control Method Using Nonlinear Tire Model (비선형 타이어모델을 이용한 완전능동형 4WS 제어방법에 관한 연구)

  • 김형내;김석일;김동룡;김건상
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.3
    • /
    • pp.76-85
    • /
    • 1997
  • The understeer characteristics of four wheel steering system(4WS system) in a high speed region have a negative effect upon the yaw velocity, leading to a decrease in the handling ability of vehicle. As a result, even if the side slip angle of vehicle can be kept up a minimum, a driver must compensate a decrease in yaw velocity by increasing the steering wheel angle in order to track the desired vehicle path. In this study, to keep the side slip angle of vehicle at zero and achieve a suitable yaw velocity in vehicle motion, a full active 4WS system(FA 4WS system) with actively steerable front and rear wheels is presented based on a nonlinear vehicle model and a model following control of yaw velocity. And the analysis results show the fat that, besides the excellent stability of vehicle, the FA 4WS system is able to realize better handling performance of vehicle than the previous 4WS systems in the high speed region.

  • PDF

A Study on Tire Noise Characteristics for Various Road Surfaces (노면 변화에 따른 타이어 소음 특성 연구)

  • Nam, Kyung-Tak;Kang, Young-Kyu;Lee, Dong-Ha;Kim, Gi-Jeon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11b
    • /
    • pp.148-151
    • /
    • 2005
  • Roughness of a road is an important parameter which not only indicates vehicle's vibration and noise, but it is also related to the contact force of the tire which is induced by tire's deformation and vibration. Since tire noise indeed comes from this deformation and vibration, the estimation of the force is the key factor fur the reduction of tire noise. Because of the difficulty of directly measuring the contact force, the indirect estimation is enforced from the vibration signature measured on the tire support. This study suggests the "inverse filtering" technique well known in modern digital signal processing, so as to reform the tire contact force from monitored vibration signals.

  • PDF

Tire Lateral Force Estimation System Using Nonlinear Kalman Filter (비선형 Kalman Filter를 사용한 타이어 횡력 추정 시스템)

  • Lee, Dong-Hun;Kim, In-Keun;Huh, Kun-Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.6
    • /
    • pp.126-131
    • /
    • 2012
  • Tire force is one of important parameters which determine vehicle dynamics. However, it is hard to measure tire force directly through sensors. Not only the sensor is expensive but also installation of sensors on harsh environments is difficult. Therefore, estimation algorithms based on vehicle dynamic models are introduced to estimate the tire forces indirectly. In this paper, an estimation system for estimating lateral force and states is suggested. The state-space equation is constructed based on the 3-DOF bicycle model. Extended Kalman Filter, Unscented Kalman Filter and Ensemble Kalman Filter are used for estimating states on the nonlinear system. Performance of each algorithm is evaluated in terms of RMSE (Root Mean Square Error) and maximum error.

Analysis for Internal Flow of Tube on the Self Inflating Tire Using the FSI Method (FSI 기법을 이용한 Self Inflating Tire의 펌핑 튜브 내부 유동 해석)

  • Kim, Myeongjun;Seong, Inchul;Hwang, Inkyeong;Park, Taewon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.6
    • /
    • pp.660-667
    • /
    • 2016
  • Maintaining proper tire air pressure is an essential element in ensuring vehicle safety. UHP Tires that boast of many safety features are increasing in the market. In particular, the development of "Self-Inflating Tire" technology is accelerating around the globe. Self-inflating tire refers to a technique for maintaining appropriate tire pressure. An internal regulator senses when tire inflation pressure has dropped below the set air pressure. The tire boosts air through the valve when rolling and compressed air enters into the tire. This procedure keeps the tire air pressure at an appropriate level and increases tire safety. Flow analysis of the internal tube is required to examine self-inflating tires. In this study, a method of tube flow analysis using the FSI Method is proposed. The valve system is also implemented to optimize the regulator and sensor.

A Study on Independent Steering & Driving Control Algorithm for 6WS/6WD Vehicle (6WS/6WD 차량의 독립조향 및 구동 제어알고리즘에 관한 연구)

  • Kim, Chang-Jun;Han, Chang-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.4
    • /
    • pp.313-320
    • /
    • 2011
  • Multi-axle driving vehicles that are used in special environments require high driving performance, steering performance, and stability. Among these vehicles, 6WS/6WD vehicles with middle wheels have structural safety by distributing the load and reducing the pitch angle during rapid acceleration and braking. 6WS/6WD vehicles are favored for military use in off road operations because of their high maneuverability and mobility on extreme terrains and obstacles. 6WD vehicles that using in-wheel motor can generate the independent wheel torque without other mechanical parts. Conventional vehicles, however, cannot generate an opposite driving force at each side wheel. Using an independent steering and driving system, six-wheel vehicles can show better performance than conventional vehicles. Using of independent steering and driving system, the 6 wheel vehicle can improve a performance better than conventional vehicle. This vehicle enhances the maneuverability under low speed and the stability at high speed. This paper describes an independent 6WS/6WD vehicle, consists of three parts; Vehicle Model, Control Algorithm for 6WS/6WD and Simulation. First, vehicle model is application of TruckSim software for 6WS and 6WD. Second, control algorithm describes the optimum tire force distribution method in view of energy saving. Last is simulation and verification.

New Vehicle Classification Algorithm with Wandering Sensor (원더링 센서를 이용한 차종분류기법 개발)

  • Gwon, Sun-Min;Seo, Yeong-Chan
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.6
    • /
    • pp.79-88
    • /
    • 2009
  • The objective of this study is to develop the new vehicle classification algorithm and minimize classification errors. The existing vehicle classification algorithm collects data from loop and piezo sensors according to the specification("Vehicle classification guide for traffic volume survey" 2006) given by the Ministry of Land, Transport and Maritime Affairs. The new vehicle classification system collects the vehicle length, distance between axles, axle type, wheel-base and tire type to minimize classification error. The main difference of new system is the "Wandering" sensor which is capable of measuring the wheel-base and tire type(single or dual). The wandering sensor obtains the wheel-base and tire type by detecting both left and right tire imprint. Verification tests were completed with the total traffic volume of 762,420 vehicles in a month for the new vehicle classification algorithm. Among them, 47 vehicles(0.006%) were not classified within 12 vehicle types. This results proves very high level of classification accuracy for the new system. Using the new vehicle classification algorithm will improve the accuracy and it can be broadly applicable to the road planning, design, and management. It can also upgrade the level of traffic research for the road and transportation infrastructure.