• Title/Summary/Keyword: Vegetative-hydrologic-geomorphologic interactions

Search Result 1, Processing Time 0.014 seconds

Fluvial Processes and Vegetation - Research Trends and Implications (하천과정과 식생 - 연구동향과 시사점)

  • Woo, Hyoseop;Cho, Kang-Hyun;Jang, Chang Lae;Lee, Chan Joo
    • Ecology and Resilient Infrastructure
    • /
    • v.6 no.2
    • /
    • pp.89-100
    • /
    • 2019
  • We've reviewed existing studies on the interactions among vegetation, hydrology, and geomorphology in the stream corridors, adding one more factor of vegetation in the traditional area of hydro-geomorphology. Understanding of the interactions among those three factors is important not only academically but also practically since it is related intimately to the restoration of river corridor as well as management itself. Studies of this area started from field investigations in the latter part of the 20th century and focused on the flume experiments and then computer modelling in the 1990s and 2000s. Now, it has turned again to the field investigations of specific phenomena of the vegetative-hydrologic-geomorphologic interactions in detailed micro scales. Relevant studies in Korea, however, seem to be uncommon and far behind the international status quo in spite that practically important issues related directly to this topic have been emerged. In this study, we propose, based on the extensive literature review and authors' own knowledge and experiences, a conceptual diagram expressing the interactions among vegetation, flow (water), sediment, and geomorphology. Existing relevant studies in Korea since the 1990s are classified according to the categorization in the proposed diagrams and then briefly reviewed. Finally, considering the practical issues of riparian vegetation that have emerged recently in Korea, we propose areas of investigation needed in near future such as, among others, long-term and systematic field investigations and monitoring at multiple river corridors having different attributes on vegetative-hydrologic-geomorphologic interactions, including vegetative dynamics for succession.