• Title/Summary/Keyword: Vegetation index

Search Result 1,134, Processing Time 0.034 seconds

工業地域과 中心地의 階層化方法에 關한 檢討

  • 최기엽
    • Journal of the Korean Geographical Society
    • /
    • v.9
    • /
    • pp.67-75
    • /
    • 1974
  • The vegetation activity of the Korean peninsula has been monitored temporal variations through a satellite remote sensing and the vegetation index was used to set up the vegetation data map of Korea. The AVHRR data sent by the NOAA-14 satellite was collected for 8 months between April and November, 1997 to calculate the normalized difference vegetation index(NDVI) which was combined the MVC(Maximum Value Composite). Then this NDVI composite map was prepared to review the temporal variations in the vegetation activity. The NDVI has been subject to the unsupervised classification for the growing season between May and October. And the vegetation type is divided into five classes ; urban, bare soil, grass, farming land, deciduous forest and coniferous forest. The unsupervised classificaion of vegetation distribution in the Korean Peninsula shows that the urban and bare soil take 4.14% of total national area, grass 4.49%, farming land 27.54%, deciduous forest 25.61% and coniferous forest 38.22%.

  • PDF

A Study on Vegetation Index for Zoning of Natural Ecosystem on Baekdudaegan -From Namdeogyusan to Sosagogae- (백두대간 자연생태계의 지역구분을 위한 식생지수에 관한 연구 -남덕유산 -소사고개 구간-)

  • 김갑태;엄태원
    • Korean Journal of Environment and Ecology
    • /
    • v.18 no.2
    • /
    • pp.158-166
    • /
    • 2004
  • For the zoning of natural ecosystem, Vegetation Index is calculated from the vegetation data surveyed on Baekdudaegan (from Namdeogyusan to Sosagogae). Five factors-biodiversity, conservation value of the stand, environmental quality, longevity of the stand, site productivity- are considered in the calculation of Vegetation Index. Vegetation Index might be a useful zoning tool for management of Baekdudaegan. For Vegetation Index I, 8 sample plots 12.l% of total 66 sample plots are belong to core area, 21 sample plots 31.8% and 37 sample plots 56.l% are belong to buffer zone and transition area, respectively. For Vegetation Index II, 37 sample plots 41.9% of total 60 sample plots are belong to core area, 19 sample plots 28.8% and 19 sample plots 28.8% are belong to buffer zone and transition area, respectively.

Assessment of Degree of Naturalness of Vegetation on the Riverine Wetland (하천습지의 식생학적 자연도 평가)

  • Chun, Seung-Hoon
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.1
    • /
    • pp.1-11
    • /
    • 2011
  • This study was carried out to suggest the baseline data necessary for vegetation restoration at riverine wetland within stream corridor. We used the prevalence index for wetland assessment by applying the method of weighted averages with index values based on five hydrophyte indicator status as defined by estimated probability occurred in wetland. We selected near nature and urbanized reach of Gap and Yanghwa streams as experimental site. Although two sites have some different disturbance and characteristics of watershed, they showed that similarity of vegetation community including three dominant species - Salix koreensis, Phragmites communis, Miscanthus sacchariflorus - was very high. But in case of Yanghwa stream, various kinds of emergent plants along wetted condition were distinctly occurred, resulted from difference of hydrological regime and substrate, etc. Degree of naturalness of vegetation at the sampled areas indicated that near nature area of Gap stream and all area of Yanghwa stream were fitted as riverine wetland, while urbanized area of Gap stream has changed into upland condition. In conclusion assessment system using prevalence index would be considered an effective method for evaluating of natural states of riverine wetland, but further integrated consideration of physical, hydrological, and biological factors of stream process, and also with considering the difference between those qualitative data of vegetation community.

Selection of Optimal Vegetation Indices and Regression Model for Estimation of Rice Growth Using UAV Aerial Images

  • Lee, Kyung-Do;Park, Chan-Won;So, Kyu-Ho;Na, Sang-Il
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.5
    • /
    • pp.409-421
    • /
    • 2017
  • Recently Unmanned Aerial Vehicle (UAV) technology offers new opportunities for assessing crop growth condition using UAV imagery. The objective of this study was to select optimal vegetation indices and regression model for estimating of rice growth using UAV images. This study was conducted using a fixed-wing UAV (Model : Ebee) with Cannon S110 and Cannon IXUS camera during farming season in 2016 on the experiment field of National Institute of Crop Science. Before heading stage of rice, there were strong relationships between rice growth parameters (plant height, dry weight and LAI (Leaf Area Index)) and NDVI (Normalized Difference Vegetation Index) using natural exponential function ($R{\geq}0.97$). After heading stage, there were strong relationships between rice dry weight and NDVI, gNDVI (green NDVI), RVI (Ratio Vegetation Index), CI-G (Chlorophyll Index-Green) using quadratic function ($R{\leq}-0.98$). There were no apparent relationships between rice growth parameters and vegetation indices using only Red-Green-Blue band images.

Analysis of the Possibility for Practical Use of MSI/ MidIR/ II Vegetation Indices for Drought Detection of Spring Season (MSI/ MidIR/ II 식생지수를 이용한 봄 가뭄탐지 활용 가능성 분석)

  • Kim, Sung-Jae;Choi, Kyung-Sook;Chang, Eun-Mi;Hong, Seong-Wook
    • Spatial Information Research
    • /
    • v.19 no.5
    • /
    • pp.37-46
    • /
    • 2011
  • In recent years, utilizations of satellite imagery have been extensively conducted in order to obtain accurate information on drought detection in spring season. This research also carried out utilization of satellite imagery through the various vegetation indices such as NDVI(Normalized Difference Vegeation Index), MSI(Moisture Stress Index), MidIR Index, II(Infrared Index) to find better methodology to detect drought phenomena, especially occurring in spring season. For this purpose, Landsat TM(Thematic Mapper) images were used and applied on the Yeong-cheon city. In this study, the characteristics of DN(Digital Number) for each vegetation index is analyzed, and the correlation analysis between indices and DN according to the number of days with no rain is performed. The results shows high correlation between NDVI and MSI and II with positive correlation on MSI, and negative correlation on II. This indicates the possibility for practical use of MSI, II indices with NDVI to obtain better credibility for detecting spring droughts.

Assessment of Photochemical Reflectance Index Measured at Different Spatial Scales Utilizing Leaf Reflectometer, Field Hyper-Spectrometer, and Multi-spectral Camera with UAV (드론 장착 다중분광 카메라, 소형 필드 초분광계, 휴대용 잎 반사계로부터 관측된 서로 다른 공간규모의 광화학반사지수 평가)

  • Ryu, Jae-Hyun;Oh, Dohyeok;Jang, Seon Woong;Jeong, Hoejeong;Moon, Kyung Hwan;Cho, Jaeil
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_1
    • /
    • pp.1055-1066
    • /
    • 2018
  • Vegetation indices on the basis of optical characteristics of vegetation can represent various conditions such as canopy biomass and physiological activity. Those have been mostly developed with the large-scaled applications of multi-band optical sensors on-board satellites. However, the sensitivity of vegetation indices for detecting vegetation features will be different depending on the spatial scales. Therefore, in this study, the investigation of photochemical reflectance index (PRI), known as one of useful vegetation indices for detecting photosynthetic ability and vegetation stress, under the three spatial scales was conducted using multi-spectral camera installed in unmanned aerial vehicle (UAV),field spectrometer, and leaf reflectometer. In the leaf scale, diurnal PRI had minimum values at different local-time according to the compass direction of leaf face. It meant that each leaf in some moment had the different degree of light use efficiency (LUE). In early growth stage of crop, $PRI_{leaf}$ was higher than $PRI_{stands}$ and $PRI_{canopy}$ because the leaf scale is completely not governed by the vegetation cover fraction.In the stands and canopy scales, PRI showed a large spatial variability unlike normalized difference vegetation index (NDVI). However, the bias for the relationship between $PRI_{stands}$ and $PRI_{canopy}$ is lower than that in $NDVI_{stands}$ and $NDVI_{canopy}$. Our results will help to understand and utilize PRIs observed at different spatial scales.

Detection of Drought Stress in Soybean Plants using RGB-based Vegetation Indices (RGB 작물 생육지수를 활용한 콩 한발 스트레스 판별기술 평가)

  • Sang, Wan-Gyu;Kim, Jun-Hwan;Baek, Jae-Kyeong;Kwon, Dongwon;Ban, Ho-Young;Cho, Jung-Il;Seo, Myung-Chul
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.4
    • /
    • pp.340-348
    • /
    • 2021
  • Continuous monitoring of RGB (Red, Green, Blue) vegetation indices is important to apply remote sensing technology for the estimation of crop growth. In this study, we evaluated the performance of eight vegetation indices derived from soybean RGB images with various agronomic parameters under drought stress condition. Drought stress influenced the behavior of various RGB vegetation indices related soybean canopy architecture and leaf color. In particular, reported vegetation indices such as ExGR (Excessive green index minus excess red index), Ipca (Principal Component Analysis Index), NGRDI (Normalized Green Red Difference Index), VARI (Visible Atmospherically Resistance Index), SAVI (Soil Adjusted Vegetation Index) were effective tools in obtaining canopy coverage and leaf chlorophyll content in soybean field. In addition, the RGB vegetation indices related to leaf color responded more sensitively to drought stress than those related to canopy coverage. The PLS-DA (Partial Squares-Discriminant Analysis) results showed that the separation of RGB vegetation indices was distinct by drought stress. The results, yet preliminary, display the potential of applying vegetation indices based on RGB images as a tool for monitoring crop environmental stress.

Observation Test of Field Surface Reflectance Using Vertical Rotating Goniometer on Tarp Surface and Grass (수직 축 회전형 측각기 제작 및 야외 지표면 반사도 관측 시험: 타프와 잔디에서)

  • Moon, Hyun-Dong;Jo, Euni;Kim, Hyunki;Cho, Yuna;Kim, Bo-Kyeong;Ahn, Ho-Yong;Ryu, Jae-Hyun;Cho, Jaeil
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1207-1217
    • /
    • 2022
  • Vegetation indices using the reflectance of selected wavelength, associating with the monitoring purpose such as identifying the progress of crop growth, on the vegetation canopy surface is widely used in the digital agriculture technology. However, the surface reflectance anisotropy can distort the true value of vegetation index related to the condition of surface, even though the surface property be unchanged. That causes difficulty to observe accurately crop growth on the monitoring system. In this study, a simple type goniometer was designed to measure the reflectance from the anisotropic surface according to various zeniths and azimuths of sun and viewing sensor in the field. On the tarp like as Lambertian surface, the reflectance of Blue, Green, Red, Near-Infrared band was similar to the tarps' reflectance properties. However, the reflectance was slightly overestimated in the cloudy day. The relative difference values of vegetation indices on grass were overestimated for the forward viewing and underestimated for the backward viewing. In addition, enhanced vegetation index (EVI) showed less sensitive according to the positions of sun and sensor viewing. Field observation with a goniometer will be helpful to understand the anisotropy characteristics on the vegetation surface.

Forest Damage Detection Using Daily Normal Vegetation Index Based on Time Series LANDSAT Images (시계열 위성영상 기반 평년 식생지수 추정을 통한 산림생태계 피해 탐지 기법)

  • Kim, Eun-sook;Lee, Bora;Lim, Jong-hwan
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_2
    • /
    • pp.1133-1148
    • /
    • 2019
  • Tree growth and vitality in forest shows seasonal changes. So, in order to detect forest damage accurately, we have to use satellite images before and after damages taken at the same season. However, temporal resolution of high or medium resolution images is very low,so it is not easy to acquire satellite images of the same seasons. Therefore, in this study, we estimated spectral information of the same DOY using time-series Landsat images and used the estimates as reference values to assess forest damages. The study site is Hwasun, Jeollanam-do, where forest damage occurred due to hail and drought in 2017. Time-series vegetation index (NDVI, EVI, NDMI) maps were produced using all Landsat 8 images taken in the past 3 years. Daily normal vegetation index maps were produced through cloud removal and data interpolation processes. We analyzed the difference of daily normal vegetation index value before damage event and vegetation index value after event at the same DOY, and applied the criteria of forest damage. Finally, forest damage map based on daily normal vegetation index was produced. Forest damage map based on Landsat images could detect better subtle changes of vegetation vitality than the existing map based on UAV images. In the extreme damage areas, forest damage map based on NDMI using the SWIR band showed similar results to the existing forest damage map. The daily normal vegetation index map can used to detect forest damage more rapidly and accurately.

STUDY ON PREPARING FOREST DISASTER MAP USING GISANDRS

  • Jo Myung-Hee;Song Wan-Young
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.687-690
    • /
    • 2005
  • Recently there have been a lot of kinds of damages in forest area such as forest fires, forest pest, landslide so that the efficient methods to mange those information and the way to face them are deadly needed. In this study, there were preparing the various vegetation index map and comparing them with the field surveying the tried to figure out which vegetation index algorism is the best proper to present forest fire damaged area. These all were based on Landsat ETM+ satellite image (2000.10.16). The result of this study is to select the high correlation algorism among the various vegetation indexes and then construct the forest fire disaster map, the case of forest fires damaged area.

  • PDF