• Title/Summary/Keyword: Vegetation Community

Search Result 1,082, Processing Time 0.025 seconds

The Optimal Environmental Ranges for Wetland Plants: II. Scirpus tabernaemontani and Typha latifolia

  • Lee, Bo-Ah;Kwon, Gi-Jin;Kim, Jae-Geun
    • Journal of Ecology and Environment
    • /
    • v.30 no.2
    • /
    • pp.151-159
    • /
    • 2007
  • We studied the optimal ranges of water and soil characteristics for wetland plants, particularly Scirpus tabernaemontani (softstem bulrush) and Typha latifolia (broadleaf cattail), which are dominant species with potential for restoration of Korean wetlands. We observed vegetation in S. tabernaemontani and T. latifolia communities from the mid to late June, 2005, and measured characteristics of water environments such as water depth (WD), temperature (WT), conductivity (WC), and concentration of several ions $(NO_3{^-}-N,\;Ca^{2+},\;Na^+,\;Mg^{2+},\;and\;K^+)$, and characteristics of soil environments such as soil texture, organic matter (loss on ignition, LOI), conductivity, and pH. The S. tabernaemontani community was accompanied by Zizania latifolia (Manchurian wildrice), Persicaria thunbergii (Korean persicary), Actinostemma lobatum (lobed actinostemma), and Beckmannia syzigachne (American slough grass), while the T. latifolia community was accompanied by P. thunbergii, T. angustifolia (narrowleaf cattail), and Glycine soja (wild soybean). We defined the optimal range for distribution (ORD) as the range that each plant was crowded. The optimal range of water characteristics for the S. tabernaemontani community was a $WD\;10{\sim}50cm,\;WT\;24.0{\sim}32.0^{\circ}C,\;WC\;100{\sim}500{\mu}S/cm,\;{NO_3}{^-}-N\;0{\sim}60ppb,\;K^+\;0.00{\sim}1.50ppm,\;Ca^{2+}\;7.50{\sim}17.50ppm,\; Na^+\;2.50{\sim}12.50ppm,\;and\;Mg^{2+}\;3.00{\sim}7.00ppm$. In addition, the optimal range of soil characteristics for the S. tabernaemontani community was a soil texture of loam, silty loam, and loamy sand, $LOI\;8.0{\sim}16.0%,\;pH\;5.25{\sim}6.25$, and conductivity $10{\sim}70{\mu}S/cm$. The optimal range of water characteristics for the T. latifolia community was a $WD\;10{\sim}30cm,\;WT\;22.5{\sim}27.5^{\circ}C,\;WC\;100{\sim}400{\mu}S/cm,\;{NO_3}{^-}-N\;0{\sim}60ppb,\;K^+\;0.00{\sim}1.50ppm,\;Ca^{2+}\;0.00{\sim}17.50ppm,\;Na^+\;0.00{\sim}12.50ppm,\;and\;Mg^{2+}\;0.00{\sim}5.00ppm$, and the optimal range of soil characteristics for the T. fatifolia community was a soil texture of loam, sandy loam, and silty loam, LOI $3.0{\sim}9.0%,\;pH\;5.25{\sim}7.25$, and conductivity $0{\sim}70{\mu}S/cm$.

A Study on the Botany of New Natural Habitats of Abeliophyllum distichum Nakai in the Byeonsanbando National Park (변산반도국립공원 내 새로운 미선나무 자생지의 식물학적 연구)

  • Oh, Hyun Kyung;Soh, Min Seok;Rho, Jae Hyun
    • Korean Journal of Heritage: History & Science
    • /
    • v.44 no.2
    • /
    • pp.4-25
    • /
    • 2011
  • This study was performed in 2010 to examine the flora and vegetation structure and chemical characteristics of soil in the growing community of Abeliophyllum distichum, located in the Byeonsanbando National Park. This Abeliophyllum distichum community has more individual numbers in Cheongrim-ni and Jungkye-ri, Byeonsan-myeon, and Buan-gun area, which is designated as a Natural Monument (No. 370), and also where the habitat conditions for Abeliophyllum distichum is more favorable. The authors recorded 100 taxa with 45 families, 82 genus, 93 species, 4 varieties, and 3 forms. Among them, species such as Abeliophyllum distichum (critically endangered), Asarum maculatum (near threatened) and Chionanthus retusa (near threatened), which are categorized as rare plants, were recorded. According to the list of Korean endemic plants, 4 taxa, particularly Philadelphus schrenckii, Abeliophyllum distichum, Weigela subsessilis, and Lonicera subsessili, were recorded. The community of Abeliophyllum distichum is located in the northwest slope of Baekcheon watershed and the community is comprised of healthy soil. The community structure was classified into three: the Castanea crenata community, Zelkova serrata community, and Quercus serrata community. The Castanea crenata community is composed of the Cornus walteri, Platycarya strobilacea, Zelkova serrata, Rhamnella frangulioides, arranged in terms of importance percentage. The Zelkova serrata community is composed of Celtis sinensis, Quercus aliena, Styrax japonica, and Acer pseudo-sieboldianum, also according to importance percentage. As for the Quercus serrata community, it is composed of Quercus variabilis, Castanea crenata, and Prunus sargentii, also arranged in terms of importance percentage. The importance percentage of Abeliophyllum distichum is 6.6% in the Castanea crenata community, 5.6% in the Zelkova serrata community and 5.1% in the Quercus serrata community. Moreover, in order of chemical characteristics of soil pH, electrical conductivity, available phosphoric, organic matter, and exchangeable cation (K, Ca, Mg) are analyzed. The No. 3 site was relatively higher than other districts of the same chemical characteristics of soil.

Fluoride in soil and plant

  • Hong, Byeong-Deok;Joo, Ri-Na;Lee, Kyo-Suk;Lee, Dong-Sung;Rhie, Ja-Hyun;Min, Se-won;Song, Seung-Geun;Chung, Doug-Young
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.4
    • /
    • pp.522-536
    • /
    • 2016
  • Fluorine is unique chemical element which occurs naturally, but is not an essential nutrient for plants. Fluoride toxicity can arise due to excessive fluoride intake from a variety of natural or manmade sources. Fluoride is phytotoxic to most plants. Plants which are sensitive for fluorine exposure even low concentrations of fluorine can cause leave damage and a decline in growth. All vegetation contains some fluoride absorbed from soil and water. The highest levels of F in field-grown vegetables are found up to $40mg\;kg^{-1}$ fresh weight although fluoride is relatively immobile and is not easily leached in soil because most of the fluoride was not readily soluble or exchangeable. Also, high concentrations of fluoride primarily associated with the soil colloid or clay fraction can increase fluoride levels in soil solution, increasing uptake via the plant root. In soils more than 90 percent of the natural fluoride ranging from 20 to $1,000{\mu}g\;g^{-1}$ is insoluble, or tightly bound to soil particles. The excess accumulation of fluorides in vegetation leads to visible leaf injury, damage to fruits, changes in the yield. The amount of fluoride taken up by plants depending on the type of plant, the nature of the soil, and the amount and form of fluoride in the soil should be controlled. Conclusively, fluoride is possible and long-term pollution effects on plant growth through accumulation of the fluoride retained in the soil.

A Comparison of the Plant Community Structures in the Burned and Unburned Areas of Mt Kumo-san (금오산에서 산회지와 비산화지의 식물군집구조 비교)

  • Kim, Woen;Sung, Kyung-Hee
    • The Korean Journal of Ecology
    • /
    • v.19 no.1
    • /
    • pp.55-64
    • /
    • 1996
  • This is a report on the recovery of vegetation and secondary succession in the burned area studied from April, 1990 to April. 1991. The forest fire occurred in a part of Mt. $K\v{u}mo-san$ on April, 1986 and the pine forest and its understory vegetation were burned out completely. The floristic compositions of burned (B) and unburned (U) areas were composed of sixty eight and thirty one species (vascular plants), respectively. These species were divided into invaders (47 species), increasers (15 species), deceasers (3 species), neutrals (3 species), and retreaters (10 species) on the basis of summed dominance ratio ($SDR_3$). Biological spectra showed the $H-D_1-R_5-e$ type in both the burned and unburned areas. The species of Lespedeza ($SDR_3$=94.7), Miscanthus (91.95), Festuca (68.33), and Spodiopogon (52.06) were dominant in the burned areas, while the species of Pinus (76.67), Robinia (56.25), Quercus (52.08), and Carex (40.25)were dominant in the unburned area. Dominance index (C) in burned and unburned areas was 0.15 and 0.25, respectively. the index of similarity (CCs) was 0.42. The degree of succession (DS) and species diversity (H) in burned and unburned areas were 675.8, 884.2 and 4.07, 2.05, respectively. The degree of succession in the burned area graduall increased and the burned area was recovered to be simmilar to the unburned area. Evenness index in burned and unburned areas was 0.965 and 0.595, respectively.

  • PDF

Afforestation Effect Analysis Using MODIS Imagery: Yulin, Shaanxi, China As a Case Study (MODIS 영상을 이용한 중국 산시성 위린시의 조림 효과 분석)

  • Jang, Hyo-Seon;Kim, Sang-Pil;Kim, Mi-Kyeong;Sohn, Hong-Gyoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.4
    • /
    • pp.1007-1013
    • /
    • 2015
  • Desertification in China, one of the source regions of yellow dust, has been worsen by industrialization and extreme land development, which increases the damage caused by yellow dust in Korea. Because the yellow dust from China affects not only their own country, but also neighboring countries, it is becoming an international problem, and China has been started afforestation projects to prevent excessive desertification with the help of the international community. However, it is only possible for identifying the results of afforestation projects to check afforestation result reports from National Bureau of Statistics of China, which makes it difficult to check out tangible results. Therefore, this study was conducted by using remote sensing technique for monitoring afforestation status of Yulin, shaanxi, China. in which an afforestation project has been carried out steadily. MODIS imagery was used as remote sensing data and it was confirmed that vegetation has been increased through vegetation indices from 2000 to 2014 and afforestation areas were estimated as same trend of ground reference data.

Comparing Plant Species Diversity of Mountainous Deserts - Successes and Pitfalls

  • Van Etten, Eddie J.B.
    • The Korean Journal of Ecology
    • /
    • v.27 no.2
    • /
    • pp.79-86
    • /
    • 2004
  • An extensive study of the vegetation characteristics of the Hamersley Ranges, a mountainous desert area of north-west Australia, facilitated the comparison of plant species diversity measures with mountainous deserts of other parts of the world. Alpha diversity was defined as the number of species co-existing at local scales and was found to average 18 species per 0.1 ha for the Hamersley Ranges. This was found to be similar to seven other mountainous deserts in North and South America, and southern Africa. Variation in alpha diversity between these deserts was found to considerably lower than within deserts, suggesting that local processes control species richness at local scales. Beta diversity, defined here as turnover in species composition at various spatial scales, can be measured in many ways. For the Hamersley Ranges, Wilson's β ranged from 1.2 to 1.6 for five sites along a topographic gradient, whereas Whittaker's β between different plant communities was found to average 0.93. Comparable data was not found for other desert areas, but comparisons to non-desert areas suggest beta diversity within landscapes is relatively high and is likely to reflect the considerable landform heterogeneity of the Hamersley Ranges. 55∼70% of species were shared between different landscapes of the Hamersley Ranges; comparisons to other regions suggest beta diversity at this scale is relatively low. Gamma diversity, the number of species over large spatial extents, was successfully compared using regression analysis of the log-log species - area relationship. This revealed that the northern Sonoran desert has significantly less species than the Nama (inland) Karoo and Hamersley Ranges over medium spatial extents, but species numbers were similar at a regional scale. Several constraints to the valid comparison of species diversity were identified, including lack of standardisation of sampling techniques, the wide range of measures employed, general lack of published data, and the influence of the various components of spatial scale on most diversity measures. Recommendations on how to improve future comparative work are provided.

Ecological Restoration Plan for a Small Scale Public Construction Area - A Case Study on Ilsan Water Treatment Plant, Goyang-Si - (소규모 공공시설 개발 사업지의 생태적 복원 연구 - 고양시 일산정수장 조성예정지를 사례로 -)

  • Lee, soo-Dong;Kang, Hyun-Kyung
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.35 no.6
    • /
    • pp.48-63
    • /
    • 2008
  • This research is to apply suitable natural ecosystem evaluation criteria in order to develop the ecosystem conservation, restoration and ways to build substitute habitats as a compensation plan for damaged soundly natural ecosystems in small-scale projects such as resource recovery facility, filtration, etc. The environmental ecology evaluation i.e. generally based on their actual vegetation, community structure, wildlife, water system survey were measured the primary plans for reflecting unique natural environment level of site. As a result, it is necessary to conserve the land in fallow type of wetland, good conservative condition of deciduous forest, wetlanded watercourse for amphibia and reptiles crossing. However, the plan of filtration plant was destroyed wetland(sound ecosystem), natural forest, asian toad spawning area. According to the result of it schemed to build alternative wetland and spawning area, plan to healthy ecosystem and surface soil transplantation as compensation plan. The alternative wetland and spawning area are not only created a various water levels like depth of water is $0{\sim}30cm,\;30{\sim}60cm$, more than 1.5m but also it leads to asian toad spawning and wildlife inhabitant. Moreover, the ecosystem and surface soil transplantation be applied to use the Quercus acutissima forest resources(114 upper trees, 71 canopy trees, 401 shrubs) and surface soil$(5,072m^3)$ in ecology creation sets.

Construction of forest environmental information and evaluation of forest environment (산림환경 정보구축 및 산림환경 평가)

  • Chang, Kwan-Soon
    • Journal of Environmental Impact Assessment
    • /
    • v.7 no.2
    • /
    • pp.37-51
    • /
    • 1998
  • This study was carried out to lead the scientific management of the urban forest by estimating the forest environment. Forest environmental information was constructed using IDRISI system based on survey data, soil, plant, and digital elevation data. Forest environmental information was consisted of soil depth, soil organic content, soil hardness and parent rock as a soil environmental factor, and forest community, tree age, crown density as a plant environmental factor. Plant activity and topographic environment also were analyzed by using remote sensing data and digital elevation data. Environmental function of urban forest was estimated based on results of soil conservation and forest productivity. 70% of urban forest is located in elevation of lower than 200m and 55% of forest area have the slope of lower than 15 degree. Analyzed soil conservation status and forest productivity were almost the same as the soil chemical properties of collected soil sample and the vegetation index estimated using remote sensing data, respectively. Thus, the constructed forest environmental information could be useful to give some ideas for management of urban forest ecosystem and establishment of environmental conservation planning, including forests, in Taejon. The best forest environmental function was appeared at the natural ecology preservation zone. Current natural parks and urban parks were appeared to establish the environmental conservation plan for further development. The worst forest environmental function was appeared at the forest near to the industrial area and an overall and systematic plan was required for the soil management and high forest productivity because these forest was developing a severe soil acidification and having a low forest productivity.

  • PDF

Phytosociological Studies for Vegetation Conservation of Pine Forest (식생보전을 위한 소나무림의 식물사회학적 연구)

  • 배병호;이호준
    • The Korean Journal of Ecology
    • /
    • v.22 no.1
    • /
    • pp.21-29
    • /
    • 1999
  • This study was carried out to clarify the syntaxonomy of the pine forest in Youngdong region by the phytosociological methods. As a result of the investigation of 62 quadrats, Pinus densiflora forest was classified into four subassociations: Typical subassociation, Quercus mongolica subassociation, Rhododendron mucronulatum subassociation, Rhus chinensis subassociation. Many differences in ecological characteristics such as species composition, stratum structure, vegetation coverage and of diameter at breast height(DBH) of class distribution were found among the communities. Soil properties of the pine forest on the study area was relatively poor compared with other pine forests, especially, soil pH was strongly acidic with 4.87. Soil conditions among the subassociations appeared different. Future succession of pine forest by the similarity index of communities was proposed. Estimated degree of green naturality for Typical subassociation and Q. mongolica subassociation correspond to 7th grade, and R. mucronulatum subassociation, 8-1st grade, and R. chinensis subassociation, 8-2nd grade.

  • PDF

Vegetation characteristics, conservation and ecotoursim strategies for water spider(Argyroneta aquatica) in small marsh, Korean Natural Monument (물거미가 서식하는 천연기념물 습지의 식생학적 특성과 보전 및 생태관광화 방안)

  • You, Young-Han;Yi, Hoon-Bok
    • Journal of Wetlands Research
    • /
    • v.11 no.2
    • /
    • pp.99-106
    • /
    • 2009
  • Water spider(Argyroneta aquatica Clerck) is only spider that live under aquatic water. In korea, water spider distributed only in Undari Wetland, Yeochon County, Kyongii Proviance, where it is designated as Natural Monument. I counted the population density, analysed the ecological traits such as actual vegetation map, and suggested conservation strategy and eco-tourism planning for water spider. The population mean density of water spider was one individual/$m^2$ and 8,000 individuals/ha. The wetland inhabited by water spider was characterized by high water level fluctuation between rainy season and dry ones. Wetland plant community was dominated by Phragmites australis and Leersia oryzoides var. japonica with submersed plant, Utricularia japonica. It is need to supply water for inhibiting terrestial succession trend during the dry season and to connect three fragmented wetlands through ecological corridor. Also, It was suggested that ecotourism planning is important for conserving this wetland.

  • PDF