• Title/Summary/Keyword: Vegetation Community

Search Result 1,082, Processing Time 0.027 seconds

Vegetation Classification and Ecological Characteristics of Black Locust (Robinia pseudoacacia L.) Plantations in Gyeongbuk Province, Korea (경북지방 아까시나무 조림지의 식생유형과 생태적 특성)

  • Jae-Soon Song;Hak-Yun Kim;Jun-Soo Kim;Seung-Hwan Oh;Hyun-Je Cho
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.1
    • /
    • pp.11-22
    • /
    • 2023
  • This study was established to provide basic information necessary for ecological management to restore the naturalness of black locust (Robinia pseudoacacia L.) plantations located in the mountains of Gyeongbuk, Korea. Using vegetation data collected from 200 black locust stands, vegetation types were classified using the TWINSPAN method, the spatial arrangement status according to the environmental gradient was identified through DCA analysis, and a synoptic table of communities was prepared based on the diagnostic species determined by determining community fidelity (Φ) for each vegetation type. The vegetation types were classified into seven types, namely, Quercus mongolica-Polygonatum odoratum var. pluriflorum type, Castanea crenata-Smilax china type, Clematis apiifolia-Lonicera japonica type, Rosa multiflora-Artemisia indica type, Quercus variabilis-Lindera glauca type, Ulmus parvifolia-Celtis sinensis type, and Prunus padus-Celastrus flagellaris type. These types usually reflected differences in complex factors such as altitude, moisture regime, successional stage, and disturbance regime. The mean relative importance value of the constituent species was highest for black locust(39.7), but oaks such as Quercus variabilis, Q. serrata, Q. mongolica, Q. acutissima, and Q. aliena were also identified as important constituent species with high relative importance values, indicating their potential for successional trends. In addition, the total percent cover of constituent species by vegetation type, life form composition, species diversity index, and indicator species were compared.

A Study on the Characteristics and Changes of Vegetation Structure of the Plant Community in Mt. Kwanak (관악산의 식생구조 특성과 변화 연구)

  • Jang, Jae-Hoon;Han, Bong-Ho;Lee, Kyong-Jae;Choi, Jin-Woo;Noh, Tai-Hwan
    • Korean Journal of Environment and Ecology
    • /
    • v.27 no.3
    • /
    • pp.344-356
    • /
    • 2013
  • This study is a continuation of the 22 year consecutive study (1972~1993) to monitor community dynamics of forest in Mt. Kwanak. This study was intended to provide basic data for urban forest management in the future by analyzing actual changes in vegetation structure of forest in Mt. Kwanak caused by urban environmental changes. For the past 39 years (1972~2010), average temperature increased by approximate between 1.1 and $1.7^{\circ}C$ and soil acidification (pH $5.40{\rightarrow}4.50$) and contents of $K^+$ ($0.67{\rightarrow}0.25$) and $Ca^{{+}{+}}$ ($3.20{\rightarrow}0.87$) apparently tended to decrease. According to analysis importance percentage and DBH class of community types classified based on DCA, the succession stopped at Quercus mongolica for 39 years. In addition, the succession was expected to be held at Q. mongolica or to shift from Pinus densiflora to Q. mongolica and from Q. acutissima to Q. serrata. Size of trees growing in forest of Mt. Kwanak increased but the number of species and population of trees showed a downward trend for the 39 years and Styrax japonica and Sorbus alnifolia, which are indicator species, increased their dominance continuously. Decrease in contents of $K^+$, $Ca^{{+}{+}}$, and $Mg^{{+}{+}}$ and soil acidification for the past 39 years was found to affect degradation of vegetation structure in Mt. Kwanak.

A study on the Flora of the Mt. Joghesan (조계산의 식물상에 관한 연구)

  • Kim, Jong-Hong;Suk-Mo Chang
    • Journal of environmental and Sanitary engineering
    • /
    • v.5 no.1
    • /
    • pp.63-88
    • /
    • 1990
  • The vegetation of Mt. Joghesan of a provincial park in Cheolanamdo was surveyed over twenty times from July, 1980 to December, 1981. The plants of Mt. Jonghesan consisted of 10 forma, 107 varieties, 597 species, 424 genera and 122 families, and among them were 204 species of esculent plants, 199 species of medicina plants and 30 species of the others oil plants and fiber plants. Evergreen herbs consisted of 12 species, including Coniogramme intermedia, Asplenium sarelii, and Asplenium incisum etc. And Evergreen broad-leaved trees consisted of 22 species, including Thea sinensis, Sasa borealis, and Quercus acuta etc. And evergreen needle-leaved trees consisted of 15 species, including Torreya nacitora, Pinus densiflora, Sciadopitys japonica, and Chamaecyparis obtusa etc. The community of broad-leaved consisted of Quercus spp, Carpinus laxiflora, Sasa borealis, including leading dominant species of Lespedeza maximowiczii, Viburnum erosum, Fraxius rhynchophylla, Viburnum dilatum, Rhus trichocarpa, Zelkova serrata, Miscanthus sinensis, Eragrostis ferrugina, Carex augustinowiczii persicaria filiforme var. neofiliforme, Vicia amoena, Smilax riparia var. ussuriensis, and Aster yomena etc. The vegetation of Seunamsa areas in Mt. Joghesan was favorable but the vegetations of the other areas in the mountain were negligible. The vegetation of Koolmokchi areas which had been much destroyed by forest fires was mostly covered with Quercus spp which are resistant to forest fires. Lindera sericea, Alangium platanifolium var. macrophyllum, Ilex macropoda, Corylopsis coreana, Albizzia julibrssin of old trees, Acer mono, the community of Thea sinensis, Stewartca koreana, Cornus alba, Dryopteris bisstiana, Asplenium incisum, Camptosorus, Lepisorus thunbergianus, gastrodia elata, Cymbidium goeringii, and the community of Persicaria filiforme var. neofiliforme etc. in Mt. Jonhesan are autochthonous flora, and their preservation is required. As the Pinus densiflora forest in Mt. Joghesan which was hewn down by human power has not been restored, Jeopchi areas and Koolmokchi areas in Mt. Joghesan have no Pinnus densiflora trees 700m above the sea level.

  • PDF

Summer Algal Communities in the Rocky Shore of South Sea of Korea -II. Subtidal communities- (남해의 하계 해조군집 -II. 조하대의 군집-)

  • KANG Rae-Seon;JE Jong-Geel;SOHN Chul-Hyun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.26 no.2
    • /
    • pp.182-197
    • /
    • 1993
  • Algal community on the subtidal rocky zone of the South Sea of Korea was divided into two or three sequencing zones. The upper subtidal zone was characterized by the wave exposure-tolerant surf wrack(Pachymeniopsis, Gigartina), which formed dense swirling carpet. Its vertical range was from the surface to $3{\sim}5$ meters in depth, and more deeply extended in turbid waters including Sorido, Yokchido, Pijindo, Manjedo. The mid subtidal zone ranging from 5 to 25 meters in depth was characterized by a large brown algal forest (Ecklenia, Sargassum). But it was generally unrecognizable in that turbid waters, in which the vertical limit of vegetation was at most $10{\sim}15$ meters in depth. The low subtidal zone was characterized by a general lack of algal species and was not easily distinguished from the mid or sometimes from the upper zone. There was a distinct difference in abundance of vegetation between turbid waters and clear waters including Munsom, Kwantaldo, Yosodo, Hongdo, Ch'ujado. In turbid waters the vegetation was much poorer because the tubidity caused from the muddy sediment inhibited an algae to settle down and to grow up. On the basis of the phytogeographical methods using UPGMA, the 10 studied islands were classified into two groups, Munsom and the others. This floristic discontinuity between the two groups might be caused from the difference of water temperature.

  • PDF

An Analysis of Vegetation-Environment Relationships of Quercus mongolica Communities by TWINSPAN and DCCA (TWINSPAN과 DCCA에 의한 신갈나무군집(群集)과 환경(環境)의 상관관계(相關關係) 분석(分析))

  • Song, Ho Kyung;Jang, Kyu Kwan;Kim, Seong Deog
    • Journal of Korean Society of Forest Science
    • /
    • v.84 no.3
    • /
    • pp.299-305
    • /
    • 1995
  • Vegetational data from 81 quadrats of Quercus mongolica communities in Mt. Odae and Mt. Jumbong were analysed by applying two multivariate methods : two - way indicator species analysis(TWNSPAN) for classification and detrended canonical correspondence analysis(DCCA) for ordination. The dominant tree species of Quercus mongolica communities were found in the order of Quercus mongolica, Acer pseudosieboldianum. Tilia amurensis, Carpinus cordata, Acer mono, and Fraxinus rhynchophylla. The forest vegetation of Quercus mongolica community was classified into Quercus mongolica, Quercus mongolica - Carpinus cordata, and Quercus mongolica - Abies nephrolepis groups according to the TWNSPAN. The relationships between the distribution of dominant groups for forest vegetation and soil condition in Quercus mongolica communities were investigated by analysing elevation and soil nutrition gradients. Quercus mongolica group was distributed in the low elevation and poor nutrition area of total nitrogen, Quercus mongolica - Carpinus cordata group was distributed in the low elevation and good nutrition area of $Mg^{{+}{+}}$ and $Ca^{{+}{+}}$, while Quercus mongolica Abies nephrolepis group was distributed in the high elevation and poor nutrition area of $Mg^{{+}{+}}$ and $Ca^{{+}{+}}$. The two dominant factors influencing community distribution were elevation and total nitrogen.

  • PDF

Vegetation Structure of Taxus cuspidata Communities in Subalpine Zone (아고산대 주목 군락의 식생구조에 관한 연구)

  • Cho, Min-Gi;Chung, Jae-Min;Jung, Hye-Ran;Kang, Mee-Young;Moon, Hyun-Shik
    • Journal of agriculture & life science
    • /
    • v.46 no.5
    • /
    • pp.1-10
    • /
    • 2012
  • This study analyzed on the characteristics of vegetation structure, species composition and DBH class distribution in order to conservation and effective management for Taxus cuspidata community in Mt. Seorak, Mt. Balwang, Mt. Taebaek, and Mt. Odae. The vegetation in upper, subtree and shrub layer was consist of 11, 22, 33 species in Mt. Seorak, 15, 21, 33 species in Mt. Balwang, 10, 23, 36 species in Mt. Taebaek, and 14, 30, 32 species in Mt. Odae. As a result of importance value at all study sites, T. cuspidata and Abies nephrolepis in upper layer, T. cuspidata, A. nephrolepis and Acer komarovii in subtree layer, and Tripterygium regelii in shrub layer were high, respectively. Species diversity in upper and subtree layer at all study sited were ranged 0.834~1.234 and 1.125~1.329, respectively. According to the DBH class of major three species, T. cuspidata in Mt. Odae site showed a reverse J-shaped curve, which was estimated that T. cuspidata community of this site might be maintained continuously as a stable state.

A Characteristic of Vegetation Distribution in Jangdo Wetland (장도 습지보호지역의 식생 분포 특성)

  • An, Kyung-Whan;Lim, Jeong-Cheol;Lee, Yeoul-Kyung
    • Korean Journal of Environmental Biology
    • /
    • v.33 no.1
    • /
    • pp.63-74
    • /
    • 2015
  • The purpose of this study is to provide the basis information for ecological conservation and restoration of Jangdo wetland conservation area through the survey of vegetation diversity and spatial distribution characteristics. Syntaxonomic account of plant communities were carried out field survey by Z.-M. school method at 14 sites and relationship analysis between plant community and environment variables with Principal Coordinate Analysis (PCoA). Based on the floristic composition, all the plots were classified into xeric and hydric type and arranged in seven plant communities. Spatial distribution of plant communities is determined primarily by the soil moisture condition and amount of organic matter. Hydric vegetation is around 8% ($7,337m^2$) of the protected area and distributed swamp forest of dominating willows under 18 years. Proliferation of willows are recognised extended from edge to centre after in 1990's caused by fallow and control of livestock grazing on wetland. Jangdo wetland will have to readjust the protection boundary because wet meadow zone and swamp forest have been distributed outside the protection area.

Ecological Studies of Plants for Control of Environmental Pollution, III -The Studies on the Content and Contamination of Heavy Metals and Vegetation of Roadside- (환경오염 방지를 위한 식물의 생태학적 연구(III) -도로변 식생과 중금속 함량 및 오염에 관한 연구)

  • 차종환
    • Journal of Plant Biology
    • /
    • v.17 no.4
    • /
    • pp.158-162
    • /
    • 1974
  • Some ecological attributes of perennial plants and Pb contamination were analyzed for study plots near an entrance of Nevade Test Site at Mercury Valley, Nye County, Nevada. The surface of the desert pavement soil was composed of stones (1 to 4cm diameter). The underside of each stone was coated with coarse and fine sand (about 90%). The profiles of soil were constituted with the A-horizon and C-horizon only. The soil pH at the plots ranges from 7.6 to 8.5, C/N was 13 and cation exchange capacity showed 15me/100g. Nine species and 42 number of individuals were found in all plots. Franseria dumosa and Larrea divaricata were dominant species. The discrete clumps of vegetation were consisted of 9 species of common perennials and these were covered about 25% on desert pavement, on the other words, bare area without vegetation was about 75%. The size and spacing of the plants was irregular. Community coefficient as comparison between shrub species in these study area and those in near the low elevation desert indicated a low degree of similarity. Density, cover and productivity in the study plots as compared with those in the nearest study areas in Mercury Valley showed a higher value. The soils in the studied area involved high heavy metal contents in the plant tissue was higher than those of its soil. The leavds of Lycium andersonii tended to accumulate more Zn and Mo than those of the other species. Larrea divaricata leaves accumulated very high leaves of Fe and Ephedra nevadensis were generally high in Mn. Lead contamination was apparent in foliage of desert vegetation collected alongside the roadway, reflecting the variation in traffic volume. Lead contents greater than fifteen-fold of normal (low traffic) were found in plant foliage alongside the heavily traveled roadway. Lead content of old foliage by the heavily traveled roadway was as much as 129 ppm but that of new foliage 17 ppm only.

  • PDF

Organic carbon distribution and budget of dominant woody plant community in the subalpine zone at volcanic Jeju Island, Korea

  • Jang, Rae-Ha;Lee, Seung-Yeon;Lee, Eung-Pill;Lee, Soo-In;Kim, Eui-Joo;Lee, Sang-Hun;You, Young-Han
    • Journal of Ecology and Environment
    • /
    • v.43 no.4
    • /
    • pp.390-399
    • /
    • 2019
  • Background: The Northern Hemisphere forest ecosystem is a major sink for atmospheric carbon dioxide, and the subalpine zone stores large amounts of carbon; however, their magnitude and distribution of stored carbon are still unclear. Results: To clarify the carbon distribution and carbon budget in the subalpine zone at volcanic Jeju Island, Korea, we report the C stock and changes therein owing to vegetation form, litter production, forest floor, and soil, and soil respiration between 2014 and 2016, for three subalpine forest ecosystems, namely, Abies koreana forest, Taxus cuspidata forest, and Juniperus chinensis var. sargentii forest. Organic carbon distribution of vegetation and NPP were bigger in the A. koreana forest than in the other two forests. However, the amount of soil organic carbon distribution was the highest in the J. chinensis var. sargentii forest. Compared to the amount of organic carbon distribution (AOCD) of aboveground vegetation (57.15 t C ha-1) on the subalpine-alpine forest in India, AOCD of vegetation in the subalpine forest in Mt. Halla was below 50%, but AOCD of soil in Mt. Halla was higher. We also compared our results of organic carbon budget in subalpine forest at volcanic island with data synthesized from subalpine forests in various countries. Conclusions: The subalpine forest is a carbon reservoir that stores a large amount of organic carbon in the forest soils and is expected to provide a high level of ecosystem services.

Local and regional steppe vegetation palatability at grazing hotspot areas in Mongolia

  • Amartuvshin, Narantsetsegiin;Kim, Jaebeom;Cho, Nanghyun;Seo, Bumsuk;Kang, Sinkyu
    • Journal of Ecology and Environment
    • /
    • v.46 no.1
    • /
    • pp.76-84
    • /
    • 2022
  • Background: Climate and livestock grazing are key agents in determining current Mongolian steppe vegetation communities. Together with plant coverage or biomass, palatability of steppe community is regarded as a useful indicator of grassland degradation, in particular, at grazing hotspots in arid and semi-arid grasslands. This study analyzed relationships between livestock grazing pressure and steppe vegetation palatability at three summer pastures with different aridity (dry, xeric, and mesic) and livestock numbers (1,100, 1,800, and 4,100 sheep units, respectively). At each site, it was surveyed coverage, biomass, and species composition of different palatability groups (i.e., palatable [P], impalatable [IP], and trampling-tolerant [TT]) along a 1-km transect from grazing hotspots (i.e., well) in every July from 2015 to 2018. Results: In results, total vegetation coverage increased with wetness, 7 times greater at mesic site than dry one in averages (33.1% vs. 4.5%); biomass was 3 times higher (47.1 g m-2 vs. 15.7 g m-2). Though P was the dominant palatability group, the importance of IP in total coverage increased with aridity from mesic (0.6%) to dry (40.2%) sites. Whereas, TT increased with livestock numbers across sites. Locally, IP was observed more frequently near the wells and its spatial range of occurrence becomes farther along the transects with aridity across sites from mesic (< 100 m) to dry (< 700 m from the well). Conclusions: Our results showed that the importance of IP and its spatial distribution are different at both local and regional scales, indicating that the palatability parameters are sensitive to discern balance between selective-grazing demand and climate-driven foraging supply in Mongolian rangelands.