이 논문에서 우리는 CRAY-2에서 편미분방정식에서 발생하는 대형희귀 연립방정 식의 효과적인 벡터준비행렬을 만들기 위한 재배열방법을 제시한다. 이 재배열방법은 종래의 빨강/검정 배열의 선형 형태로써, ILU 준비행렬의 변형에 사용될 경우 필인 (fill-in)을 크게 하면 종래의 빨강/검정 재배열의 약점이던 수렴율의 감소를 극복할 수 있다. 우리는 CRAY-2에서 여러 가지 실험을 통해 우리의 주장을 입증한다. 또, 에러 행렬의 후로베니우스 놈을 계산한 결과도 우리의 주장과 일치한다.
인공 신경망 기반 자연어 처리 시스템들에서 단어를 벡터로 변환할 때, 크게 색인 및 순람표를 이용하는 방법과 합성곱 신경망이나 회귀 신경망을 이용하는 방법이 있다. 이 때, 전자의 방법을 사용하려면 시스템이 수용 가능한 어휘집이 정의되어 있어야 하며 새로운 단어를 어휘집에 추가하기 어렵다. 반면 후자의 방법을 사용하면 단어를 구성하는 문자들을 바탕으로 벡터 표현을 생성하기 때문에 어휘집이 필요하지 않지만, 추가적인 인공 신경망 구조가 필요하기 때문에 모델의 복잡도와 파라미터의 수가 증가한다는 단점이 있다. 본 연구에서는 위 두 방법의 한계를 극복하고자 Bag of Characters를 응용하여 단어를 구성하는 문자들의 집합을 바탕으로 벡터 표현을 생성하는 방법을 제안한다. 제안된 방법은 문자를 기반으로 동작하기 때문에 어휘집을 정의할 필요가 없으며, 인공 신경망 구조가 사용되지 않기 때문에 시스템의 복잡도도 증가시키지 않는다. 또한, 단어의 벡터 표현에 단어를 구성하는 문자들의 정보가 반영되기 때문에 Out-Of-Vocabulary 단어에 대한 성능도 어휘집을 사용하는 방법보다 우수할 것으로 기대된다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제10권6호
/
pp.2648-2668
/
2016
Modern mobile devices are equipped with various accelerated processing units to handle computationally intensive applications; therefore, Open Computing Language (OpenCL) has been proposed to fully take advantage of the computational power in heterogeneous systems. This article introduces a parallel software decoder of Low Density Parity Check (LDPC) codes on an embedded heterogeneous platform using an OpenCL framework. The LDPC code is one of the most popular and strongest error correcting codes for mobile communication systems. Each step of LDPC decoding has different parallelization characteristics. In the proposed LDPC decoder, steps suitable for task-level parallelization are executed on the multi-core central processing unit (CPU), and steps suitable for data-level parallelization are processed by the graphics processing unit (GPU). To improve the performance of OpenCL kernels for LDPC decoding operations, explicit thread scheduling, vectorization, and effective data transfer techniques are applied. The proposed LDPC decoder achieves high performance and high power efficiency by using heterogeneous multi-core processors on a unified computing framework.
실시간 홀로그래피 방송을 제작하기 위해서는 디지털 홀로그램을 고속으로 생성하는 것이 중요하다. 본 논문에서는 디지털 홀로그램 생성을 위한 Computer-Generated Holography(CGH) 식의 병렬 구조를 최적화하고, Compute Unified Device Architecture(CUDA)와 Open Multi-Processing (OpenMP) 를 이용한 Multi Graphic Processing Unit(Multi-GPU) 기반의 디지털 홀로그램의 고속 생성을 위한 최적화 기법을 제안한다. 디지털 홀로그램을 생성하는 과정은 독립적인 연산을 할 수 있는 다수의 개체로 병렬화 할 수 있는 구조이기 때문에 이에 특화된 CUDA와 OpenMP를 사용함으로써 CGH식을 고속으로 연산할 수 있다. 여기서 더 나아가 이를 최적화하기 위해서 상수화, 벡터화, 루프풀기 등의 방법을 제안한다. 본 논문에서 제안된 기법을 통해서 기존 CPU에서의 CGH 연산속도에 비해 약 9,700배 정도의 속도를 개선할 수 있었다.
Park, Seung-Ran;Kim, Tae-Jung;Jeong, Soo;Kim, Kyung-Ok
대한원격탐사학회:학술대회논문집
/
대한원격탐사학회 2002년도 Proceedings of International Symposium on Remote Sensing
/
pp.34-39
/
2002
Road information is very important for topographic mapping, transportation application, urban planning and other related application fields. Therefore, automatic detection of road networks from spatial imagery, such as aerial photos and satellite imagery can play a central role in road information acquisition. In this paper, we use least squares correlation matching alone for road center tracking and show that it works. We assumed that (bright) road centerlines would be visible in the image. We further assumed that within a same road segment, there would be only small differences in brightness values. This algorithm works by defining a template around a user-given input point, which shall lie on a road centerline, and then by matching the template against the image along the orientation of the road under consideration. Once matching succeeds, new match proceeds by shifting a matched target window further along road orientation at the target window. By repeating the process above, we obtain a series of points, which lie on a road centerline successively. A 1m resolution IKONOS images over Seoul and Daejeon were used for tests. The results showed that this algorithm could extract road centerlines in any orientation and help in fast and exact he ad-up digitization/vectorization of cartographic images.
본 논문에서는 직선과 곡선으로 구성된 단순한 도면으로부터 곡선을 검출한 다음에 곡선을 원형 아크로 분할하는 방법을 제안한다. 본 논문의 방법에서는 먼저 선의 중심점을 찾은 다음에 연결된 중심점을 추적하여 선분을 검출한다. 그 다음에는 선분의 양 끝에서 선분의 방향을 이용하여 이웃한 선분을 검출하여 선분을 확장해 나간다. 선분을 확장한 다음에는 직선을 제거하고 곡선만 남긴 다음에 재귀적 분할 방법을 이용하여 곡선을 아크들의 집합으로 분할한다. 본 논문에서는 기존의 벡터화 소프트웨어와 벡터 기반 아크 분할 방법과 비교 실험을 수행하였다. 실험 결과에 의하면 본 논문에서 제안된 방법이 기존의 방법에 비하여 교차점을 가지는 곡선에 대하여 보다 정확하게 아크로 분할하였다.
The problem of fitting B-spline curves to planar point clouds is studied in this paper. A novel method is proposed to deal with the most challenging case where multiple intersecting curves or curves with self-intersection are necessary for shape representation. A method based on Delauney Triangulation of data points is developed to identify connected components which is also capable of removing outliers. A skeleton representation is utilized to represent the topological structure which is further used to create a weighted graph for deciding the merging of curve segments. Different to existing approaches which utilize local shape information near intersections, our method considers shape characteristics of curve segments in a larger scope and is thus capable of giving more satisfactory results. By fitting each group of data points with a B-spline curve, we solve the problems of curve structure reconstruction from point clouds, as well as the vectorization of simple line drawing images by drawing lines reconstruction.
본 논문에서는 기계 도면의 분할 및 벡터화에 기반하여 해칭 영역을 인식하는 방법을 제안한다. 이러한 해칭영역의 인식은 다음의 세 단계로 구성된다. 먼저, 제안된 방법은 문자가 제거된 기계 도면으로부터 객체, 화살표 및 설명선(치수선, 해칭선등)의 분할 및 분리된 선분의 벡터화가 수행된다. 이러한 도면의 분할 및 벡터화가 수행되면 벡터화된 객체로부터 폐루프를 레이블링하여 행칭 영역의 후보를 결정한다. 마지막으로, 해칭 영역의 후보넹 포함되는 해칭선들을 검출함으로써 해칭 영역의 인식을 마루리한다. 제안된 방법에 의해 해칭 영역의 추출 및 인식이 용이함이 나타난다.
Kim, Myungsup;Kwak, Do Young;Jung, Jiwon;Kim, Ki-Man
ETRI Journal
/
제43권4호
/
pp.660-673
/
2021
To efficiently use frequency resources, the next 6th generation mobile communication technology must solve the problem of out-of-band emission (OoBE) of cyclic prefix (CP) orthogonal frequency division multiplexing (OFDM), which is not solved in 5th generation technology. This study describes a new zero insertion technique to replace an existing filtering scheme to solve this internal problem in OFDM signals. In the development of the proposed scheme, a precoder with a two-dimensional structure is first designed by generating a two-dimensional mapper and using the specialty of each matrix. A spectral shaping technique based on zero insertion instead of a long filter is proposed, so it can be applied not only to long OFDM symbols, but also very short ones. The proposed method shows that the transmitted signal is completely blocked at the bandwidth boundaries of signals according to the current standards, and it is confirmed that the proposed scheme is ideal with respect to bit error rate (BER) performance because its BER is the same as that of CP-OFDM. In addition, the proposed scheme can transformed into a real time structure through vectorizing process with minimal complexity.
Currently, most sentiment classification models on microblogging platforms analyze sentence parts of speech and emoticons without comprehending users' emotional inclinations and grasping moral nuances. This study proposes a hybrid sentiment analysis model. Given the distinct nature of microblog comments, the model employs a combined stop-word list and word2vec for word vectorization. To mitigate local information loss, the TextCNN model, devoid of pooling layers, is employed for local feature extraction, while BiLSTM is utilized for contextual feature extraction in deep learning. Subsequently, microblog comment sentiments are categorized using a classification layer. Given the binary classification task at the output layer and the numerous hidden layers within BiLSTM, the Tanh activation function is adopted in this model. Experimental findings demonstrate that the enhanced TextCNN-BiLSTM model attains a precision of 94.75%. This represents a 1.21%, 1.25%, and 1.25% enhancement in precision, recall, and F1 values, respectively, in comparison to the individual deep learning models TextCNN. Furthermore, it outperforms BiLSTM by 0.78%, 0.9%, and 0.9% in precision, recall, and F1 values.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.