• 제목/요약/키워드: Vector emotion

검색결과 106건 처리시간 0.027초

선형 동적 시스템 기반의 감정 엔진 모델 (Emotional Engine Model based on Linear Dynamic Systems)

  • 안호석;최진영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.213-215
    • /
    • 2007
  • This paper introduces an emotional behavior decision model for intelligent service robots. An emotional model should make different behavior decisions according to the purpose of the robots. We propose an emotional behavior decision model which can change the character of emotional model and make different behavior decisions although the situation and environment remain the same. We defined each emotional element such as reactive dynamics, internal dynamics, emotional dynamics, and behavior dynamics by state dynamic equations. The proposed system model is a linear system. If you want to add one external stimulus or behavior, you need to add just one dimensional vector to the matrix of external stimulus or behavior dynamics. The case of removing is same. The change of reactive dynamics, internal dynamics, emotional dynamics, and behavior dynamics also follows the same procedure. We implemented the proposed emotional behavior decision model and verified its performance.

  • PDF

데이터마이닝 기법을 이용한 감정 기반 음악 분류 (Music Classification Based On Emotion Utilizing Data Mining)

  • 조우연;손태식
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2015년도 춘계학술발표대회
    • /
    • pp.941-944
    • /
    • 2015
  • 저장 장치의 급속한 발전으로 인해 기존에 서비스할 수 없었던 개인 사용자를 위한 클라우드 서비스가 활성화되고 있다. 이 중 음악을 대상으로 하는 스트리밍 및 공유 서비스는 다양한 음악의 종류를 수용하기 위해 체계적인 분류를 필요로 한다. 기존의 분류체계는 단순히 작곡가나 업로더의 의견에 의해서 일방적으로 정해지기 때문에 사용자가 중심이 되는 클라우드 서비스에는 어울리지 않는다. 따라서 본 논문은 이와 같은 문제점을 해결하기 위해 사랑의 감정을 기준으로 새로운 분류체계를 제안한다. 자동적인 분류를 위해 데이터마이닝 기법을 접목시켰으며, 원활한 마이닝을 위해 오디오 음악 파일(raw data)을 정해진 크기로 자르고 feature extraction을 통해 오디오 음악 파일에 대한 전처리를 수행하였다. 이후 feature selection을 수행하기 위해 clustering을 이용해 유효한 중요도를 지나는 feature를 선별하였으며 선별된 feature를 토대로 SVN(Support Vector Machine)을 이용해 feature의 중요도에 대한 유효성을 검증함과 동시에 분류를 수행하여 감정을 기반으로 분류한 결과를 보였다.

내용기반 이미지 검색을 위한 색상, 텍스쳐, 에지 기능의 통합 (Integrating Color, Texture and Edge Features for Content-Based Image Retrieval)

  • 마명;박동원
    • 감성과학
    • /
    • 제7권4호
    • /
    • pp.57-65
    • /
    • 2004
  • 본 논문에서는 color, texture, shape의 정보를 통합 이용하여 내용기반 영상검색 시스템의 성능을 향상시키는 기법을 고찰하였다. 먼저 영상에 내재되어 있는 color를 분석 추출하여 몇 개의 대표색으로 요약 표현한 다음, 이를 활용한 근사치 측정도를 고안하였다. Texture정보 분석에 있어서는 영상의 주축 행렬 데이터를 통계적 접근 방법으로 추출하였다. Edge분석의 방법으로는 Edge 막대그래프에서 색상변환, 양자화, 필터링에 관련된 정보를 선행처리 후 Edge 정보를 추출하였다. 마지막으로, 본 연구의 결과인 내용기반 영상검색 시스템의 효율성을 precision-recall 분석과 실험적 결과를 통하여 입증하였다.

  • PDF

다중 감성 기반의 선호도 평가 시스템 (A Evaluation System for Preference based on Multi-Emotion)

  • 이기영;임명재;김규호;이용환
    • 한국컴퓨터정보학회논문지
    • /
    • 제16권5호
    • /
    • pp.33-39
    • /
    • 2011
  • 현대 사회에서는 기업의 의사결정에 있어 고객의 중요성이 지속적으로 증가되고 있으며, 정보통신 기술의 발전에 힘입어 컴퓨터상에서 효과적으로 주요 고객의 선호도를 측정하는 기법이 연구되고 있다. 그러나 이러한 선호도는 개인의 성향이 크게 반영되므로 명확하게 수치화하기 어렵고 측정 기준에 따라 모호한 결과가 산출되는 어려움이 있다. 따라서 본 논문에서는 측정된 생체정보를 이용하여 구성한 다중 감성모델을 기반으로 고객의 선호도를 평가하는 시스템을 제안하였다. 본 시스템은 여러 생체정보로 이루어진 다차원 벡터의 학습을 통하여 구조화된 감성모델을 이용하므로 동일한 기준을 적용하여 고객 선호도를 평가할 수 있다. 또한 특정 대상에 특화된 감성모델을 학습하여 정확도를 더 향상시키는 것도 가능하며 실험을 통하여 정확도의 향상을 보였다.

Stress Level Based Emotion Classification Using Hybrid Deep Learning Algorithm

  • Sivasankaran Pichandi;Gomathy Balasubramanian;Venkatesh Chakrapani
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권11호
    • /
    • pp.3099-3120
    • /
    • 2023
  • The present fast-moving era brings a serious stress issue that affects elders and youngsters. Everyone has undergone stress factors at least once in their lifetime. Stress is more among youngsters as they are new to the working environment. whereas the stress factors for elders affect the individual and overall performance in an organization. Electroencephalogram (EEG) based stress level classification is one of the widely used methodologies for stress detection. However, the signal processing methods evolved so far have limitations as most of the stress classification models compute the stress level in a predefined environment to detect individual stress factors. Specifically, machine learning based stress classification models requires additional algorithm for feature extraction which increases the computation cost. Also due to the limited feature learning characteristics of machine learning algorithms, the classification performance reduces and inaccurate sometimes. It is evident from numerous research works that deep learning models outperforms machine learning techniques. Thus, to classify all the emotions based on stress level in this research work a hybrid deep learning algorithm is presented. Compared to conventional deep learning models, hybrid models outperforms in feature handing. Better feature extraction and selection can be made through deep learning models. Adding machine learning classifiers in deep learning architecture will enhance the classification performances. Thus, a hybrid convolutional neural network model was presented which extracts the features using CNN and classifies them through machine learning support vector machine. Simulation analysis of benchmark datasets demonstrates the proposed model performances. Finally, existing methods are comparatively analyzed to demonstrate the better performance of the proposed model as a result of the proposed hybrid combination.

Classifying Social Media Users' Stance: Exploring Diverse Feature Sets Using Machine Learning Algorithms

  • Kashif Ayyub;Muhammad Wasif Nisar;Ehsan Ullah Munir;Muhammad Ramzan
    • International Journal of Computer Science & Network Security
    • /
    • 제24권2호
    • /
    • pp.79-88
    • /
    • 2024
  • The use of the social media has become part of our daily life activities. The social web channels provide the content generation facility to its users who can share their views, opinions and experiences towards certain topics. The researchers are using the social media content for various research areas. Sentiment analysis, one of the most active research areas in last decade, is the process to extract reviews, opinions and sentiments of people. Sentiment analysis is applied in diverse sub-areas such as subjectivity analysis, polarity detection, and emotion detection. Stance classification has emerged as a new and interesting research area as it aims to determine whether the content writer is in favor, against or neutral towards the target topic or issue. Stance classification is significant as it has many research applications like rumor stance classifications, stance classification towards public forums, claim stance classification, neural attention stance classification, online debate stance classification, dialogic properties stance classification etc. This research study explores different feature sets such as lexical, sentiment-specific, dialog-based which have been extracted using the standard datasets in the relevant area. Supervised learning approaches of generative algorithms such as Naïve Bayes and discriminative machine learning algorithms such as Support Vector Machine, Naïve Bayes, Decision Tree and k-Nearest Neighbor have been applied and then ensemble-based algorithms like Random Forest and AdaBoost have been applied. The empirical based results have been evaluated using the standard performance measures of Accuracy, Precision, Recall, and F-measures.

Design of Model to Recognize Emotional States in a Speech

  • Kim Yi-Gon;Bae Young-Chul
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제6권1호
    • /
    • pp.27-32
    • /
    • 2006
  • Verbal communication is the most commonly used mean of communication. A spoken word carries a lot of informations about speakers and their emotional states. In this paper we designed a model to recognize emotional states in a speech, a first phase of two phases in developing a toy machine that recognizes emotional states in a speech. We conducted an experiment to extract and analyse the emotional state of a speaker in relation with speech. To analyse the signal output we referred to three characteristics of sound as vector inputs and they are the followings: frequency, intensity, and period of tones. Also we made use of eight basic emotional parameters: surprise, anger, sadness, expectancy, acceptance, joy, hate, and fear which were portrayed by five selected students. In order to facilitate the differentiation of each spectrum features, we used the wavelet transform analysis. We applied ANFIS (Adaptive Neuro Fuzzy Inference System) in designing an emotion recognition model from a speech. In our findings, inference error was about 10%. The result of our experiment reveals that about 85% of the model applied is effective and reliable.

CAD를 활용한 데이 마케팅에 의한 넥타이 디자인 연구 - 크리스마스를 중심으로 - (A Study on the Necktie Design to Day Marketing using CAD - Focused on Christmas -)

  • 추미경
    • 복식문화연구
    • /
    • 제18권4호
    • /
    • pp.640-654
    • /
    • 2010
  • The purpose of this study is to design neckties that are motivated by Christmas symbol images that have been known to public most widely in the basis of Day marketing so as to develop the competitive commodities closed to consumers' emotion in the fashion industry. As a method of this study were to use Adobe Illustrator CS2, which is one of the vector graphic programs, to present the motif design such as Santa Claus, trees, presents and letters among Christmas symbols, and are to apply to neckties by giving a change with striped pattern, all over pattern and one point pattern. The results are as follows; Firstly, Santa Claus image was expressed by color contrast with red and white, which was perceived by red, green and white that are mostly used in Christmas. Secondly, tree images are expressed abstractly with color contrast where red and green are contrasted, and color way change was given for symbol color of Christmas. Third, in the image of gift, the image of share and image of colorfulness were considered for expression by making motifs of three dimensional hexahedron shape. Fourthly, in the image of type, motif was expressed by giving a change in horizontal and vertical writing types.

Automatic extraction of similar poetry for study of literary texts: An experiment on Hindi poetry

  • Prakash, Amit;Singh, Niraj Kumar;Saha, Sujan Kumar
    • ETRI Journal
    • /
    • 제44권3호
    • /
    • pp.413-425
    • /
    • 2022
  • The study of literary texts is one of the earliest disciplines practiced around the globe. Poetry is artistic writing in which words are carefully chosen and arranged for their meaning, sound, and rhythm. Poetry usually has a broad and profound sense that makes it difficult to be interpreted even by humans. The essence of poetry is Rasa, which signifies mood or emotion. In this paper, we propose a poetry classification-based approach to automatically extract similar poems from a repository. Specifically, we perform a novel Rasa-based classification of Hindi poetry. For the task, we primarily used lexical features in a bag-of-words model trained using the support vector machine classifier. In the model, we employed Hindi WordNet, Latent Semantic Indexing, and Word2Vec-based neural word embedding. To extract the rich feature vectors, we prepared a repository containing 37 717 poems collected from various sources. We evaluated the performance of the system on a manually constructed dataset containing 945 Hindi poems. Experimental results demonstrated that the proposed model attained satisfactory performance.

머신러닝을 이용한 이러닝 학습자 집중도 평가 연구 (A Study on Evaluation of e-learners' Concentration by using Machine Learning)

  • 정영상;주민성;조남욱
    • 디지털산업정보학회논문지
    • /
    • 제18권4호
    • /
    • pp.67-75
    • /
    • 2022
  • Recently, e-learning has been attracting significant attention due to COVID-19. However, while e-learning has many advantages, it has disadvantages as well. One of the main disadvantages of e-learning is that it is difficult for teachers to continuously and systematically monitor learners. Although services such as personalized e-learning are provided to compensate for the shortcoming, systematic monitoring of learners' concentration is insufficient. This study suggests a method to evaluate the learner's concentration by applying machine learning techniques. In this study, emotion and gaze data were extracted from 184 videos of 92 participants. First, the learners' concentration was labeled by experts. Then, statistical-based status indicators were preprocessed from the data. Random Forests (RF), Support Vector Machines (SVMs), Multilayer Perceptron (MLP), and an ensemble model have been used in the experiment. Long Short-Term Memory (LSTM) has also been used for comparison. As a result, it was possible to predict e-learners' concentration with an accuracy of 90.54%. This study is expected to improve learners' immersion by providing a customized educational curriculum according to the learner's concentration level.