• Title/Summary/Keyword: Vector autoregressive model (VAR)

Search Result 58, Processing Time 0.025 seconds

The sparse vector autoregressive model for PM10 in Korea (희박 벡터자기상관회귀 모형을 이용한 한국의 미세먼지 분석)

  • Lee, Wonseok;Baek, Changryong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.4
    • /
    • pp.807-817
    • /
    • 2014
  • This paper considers multivariate time series modelling of PM10 data in Korea collected from 2008 to 2011. We consider both temporal and spatial dependencies of PM10 by applying the sparse vector autoregressive (sVAR) modelling proposed by Davis et al. (2013). It utilizes the partial spectral coherence to measure cross correlation between different regions, in turn provides the sparsity in the model while balancing the parsimony of model and the goodness of fit. It is also shown that sVAR performs better than usual vector autoregressive model (VAR) in forecasting.

Prediction of the interest spread using VAR model (벡터자기회귀모형에 의한 금리스프레드의 예측)

  • Kim, Junhong;Jin, Dalae;Lee, Jisun;Kim, Suji;Son, Young Sook
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.6
    • /
    • pp.1093-1102
    • /
    • 2012
  • In this paper, we predicted the interest spread using the VAR (vector autoregressive) model. Variables used in the VAR model were selected among 56 domestic and foreign macroeconomic time series through crosscorrelation and Granger causality test. The performance of the VAR model was compared with the univariate time series model, AR (autoregressive) model, in view of MAPE (mean absolute percentage error) and RMSE (root mean square error) of forecasts for the last twelve months.

How to improve oil consumption forecast using google trends from online big data?: the structured regularization methods for large vector autoregressive model

  • Choi, Ji-Eun;Shin, Dong Wan
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.1
    • /
    • pp.41-51
    • /
    • 2022
  • We forecast the US oil consumption level taking advantage of google trends. The google trends are the search volumes of the specific search terms that people search on google. We focus on whether proper selection of google trend terms leads to an improvement in forecast performance for oil consumption. As the forecast models, we consider the least absolute shrinkage and selection operator (LASSO) regression and the structured regularization method for large vector autoregressive (VAR-L) model of Nicholson et al. (2017), which select automatically the google trend terms and the lags of the predictors. An out-of-sample forecast comparison reveals that reducing the high dimensional google trend data set to a low-dimensional data set by the LASSO and the VAR-L models produces better forecast performance for oil consumption compared to the frequently-used forecast models such as the autoregressive model, the autoregressive distributed lag model and the vector error correction model.

Filtered Coupling Measures for Variable Selection in Sparse Vector Autoregressive Modeling (필터링된 잔차를 이용한 희박벡터자기회귀모형에서의 변수 선택 측도)

  • Lee, Seungkyu;Baek, Changryong
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.5
    • /
    • pp.871-883
    • /
    • 2015
  • Vector autoregressive (VAR) models in high dimension suffer from noisy estimates, unstable predictions and hard interpretation. Consequently, the sparse vector autoregressive (sVAR) model, which forces many small coefficients in VAR to exactly zero, has been suggested and proven effective for the modeling of high dimensional time series data. This paper studies coupling measures to select non-zero coefficients in sVAR. The basic idea based on the simulation study reveals that removing the effect of other variables greatly improves the performance of coupling measures. sVAR model coefficients are asymmetric; therefore, asymmetric coupling measures such as Granger causality improve computational costs. We propose two asymmetric coupling measures, filtered-cross-correlation and filtered-Granger-causality, based on the filtered residuals series. Our proposed coupling measures are proven adequate for heavy-tailed and high order sVAR models in the simulation study.

A Study on Demand Forecasting of Export Goods Based on Vector Autoregressive Model : Subject to Each Small Passenger Vehicles Quarterly Exported to USA (VAR모형을 이용한 수출상품 수요예측에 관한 연구: 소형 승용차 모델별 분기별 대미수출을 중심으로)

  • Cho, Jung-Hyeong
    • International Commerce and Information Review
    • /
    • v.16 no.3
    • /
    • pp.73-96
    • /
    • 2014
  • The purpose of this research is to evaluate a short-term export demand forecasting model reflecting individual passenger vehicle brands and market characteristics by using Vector Autoregressive (VAR) models that are based on multivariate time-series model. The short-term export demand forecasting model was created by discerning theoretical potential factors that affect the short-term export demand of individual passenger vehicle brands. Quarterly short-term export demand forecasting model for two Korean small vehicle brands (Accent and Avante) were created by using VAR model. Predictive value at t+1 quarter calculated with the forecasting models for each passenger vehicle brand and the actual amount of sales were compared and evaluated by altering subject period by one quarter. As a result, RMSE % of Accent and Avante was 4.3% and 20.0% respectively. They amount to 3.9 days for Accent and 18.4 days for Avante when calculated per daily sales amount. This shows that the short-term export demand forecasting model of this research is highly usable in terms of prediction and consistency.

  • PDF

Deep learning forecasting for financial realized volatilities with aid of implied volatilities and internet search volumes (금융 실현변동성을 위한 내재변동성과 인터넷 검색량을 활용한 딥러닝)

  • Shin, Jiwon;Shin, Dong Wan
    • The Korean Journal of Applied Statistics
    • /
    • v.35 no.1
    • /
    • pp.93-104
    • /
    • 2022
  • In forecasting realized volatility of the major US stock price indexes (S&P 500, Russell 2000, DJIA, Nasdaq 100), internet search volume reflecting investor's interests and implied volatility are used to improve forecast via a deep learning method of the LSTM. The LSTM method combined with search volume index produces better forecasts than existing standard methods of the vector autoregressive (VAR) and the vector error correction (VEC) models. It also beats the recently proposed vector error correction heterogeneous autoregressive (VECHAR) model which takes advantage of the cointegration relation between realized volatility and implied volatility.

Development of the Lumber Demand Prediction Model

  • Kim, Dong-Jun
    • Journal of Korean Society of Forest Science
    • /
    • v.95 no.5
    • /
    • pp.601-604
    • /
    • 2006
  • This study compared the accuracy of partial multivariate and vector autoregressive models for lumber demand prediction in Korea. The partial multivariate model has three explanatory variables; own price, construction permit area and dummy. The dummy variable reflected the boom of lumber demand in 1988, and the abrupt decrease in 1998. The VAR model consists of two endogenous variables, lumber demand and construction permit area with one lag. On the other hand, the prediction accuracy was estimated by Root Mean Squared Error. The results showed that the estimation by partial multivariate and vector autoregressive model showed similar explanatory power, and the prediction accuracy was similar in the case of using partial multivariate and vector autoregressive model.

A Leading-price Analysis of Wando Abalone Producer Prices by Shell Size Using VAR Model (VAR 모형을 이용한 크기별 완도 전복가격의 선도가격 분석)

  • Nam, Jongoh;Sim, Seonghyun
    • Ocean and Polar Research
    • /
    • v.36 no.4
    • /
    • pp.327-341
    • /
    • 2014
  • This study aims to analyze causality among Wando abalone producer prices by size using a vector autoregressive model to expiscate the leading-price of Wando abalone in various price classes by size per kg. This study, using an analytical approach, applies a unit-root test for stability of data, a Granger causality test to learn about interaction among price classes by size for Wando abalone, and a vector autoregressive model to estimate the statistical impact among t-1 variables used in the model. As a result of our leading-price analysis of Wando abalone producer prices by shell size using a VAR model, first, DF, PP, and KPSS tests showed that the Wando abalone monthly price change rate by size differentiated by logarithm were stable. Second, the Granger causality relationship analysis showed that the price change rate for big size abalone weakly led the price change rate for the small and medium sizes of abalone. Third, the vector autoregressive model showed that three price change rates of t-1 period variables statistically, significantly impacted price change rates of own size and other sizes in t period. Fourth, the impulse response analysis indicated that the impulse responses of structural shocks for price change rate for big size abalone was relatively more powerful in its own size and in other sizes than shocks emanating from other sizes. Fifth, the variance decomposition analysis indicated that the price change rate for big size abalone was relatively more influential than the price change rates for medium and small size abalone.

A Causality Analysis of the Hairtail Price by Distribution Channel Using a Vector Autoregressive Model (VAR 모형을 이용한 유통단계별 갈치가격의 인과성 분석)

  • Kim, Cheol-Hyun;Nam, Jong-Oh
    • The Journal of Fisheries Business Administration
    • /
    • v.46 no.1
    • /
    • pp.93-107
    • /
    • 2015
  • This study aims to analyze causalities among Hairtail prices by distribution channel using a vector autoregressive model. This study applies unit-root test for stability of data, uses Granger causality test to know interaction among Hairtail Prices by distribution channel, and employes the vector autoregressive model to estimate statistical impacts among t-2 period variables used in model. Analyzing results of this study are as follows. First, ADF, PP, and KPSS tests show that the change rate of Hairtail price by distribution channel differentiated by logarithm is stable. Second, a Granger causality test presents that the producer price of Hairtail leads the wholesale price and then the wholesale price leads the consumer price. Third, the vector autoregressive model suggests that the change rate of Hairtail producer price of t-2 period variables statistically, significantly impacts change rates of own, wholesale, and consumer prices at current period. Fourth, the impulse response analysis indicates that impulse responses of the structural shocks with a respectively distribution channel of the Hairtail prices are relatively more powerful in own distribution channel than in other distribution channels. Fifth, a forecast error variance decomposition of the Hairtail prices points out that the own price has relatively more powerful influence than other prices.

Analysis of the relationship between garlic and onion acreage response

  • Lee, Eulkyeong;Hong, Seungjee
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.1
    • /
    • pp.136-143
    • /
    • 2016
  • Garlic and onion are staple agricultural products to Koreans and also are important with regard to agricultural producers' income. These products' acreage responses are highly correlated with each other. Therefore, it is necessary to test whether there is a cointegration relationship between garlic acreage and onion acreage when one tries to estimate the acreage response's function. Based upon the test result of cointegration, it is confirmed that there is no statistically significant cointegration relationship between garlic acreage and onion acreage. In this case, vector autoregressive model is preferred to vector error correction model. This study investigated the dynamic relationship between garlic and onion acreage responses using vector autoregressive (VAR) model. The estimated results of VAR acreage response models show that there is a statistically significant relationship between current and lagged acreage of more than one lag. Therefore, it is recommended that government should consider the long-run period's relationship of each product's acreage when it plans a policy for stabilizing the supply and demand of garlic and onion. For the price variables, garlic price only affects garlic acreage response while onion price affects not only onion acreage response but also garlic acreage response. This implies that the stabilizing policy for onion price could have bigger effects than that for garlic price stabilization.