• Title/Summary/Keyword: Vector Store

Search Result 46, Processing Time 0.021 seconds

Encryption Algorithm using Polyline Simplification for GIS Vector Map

  • Bang, N.V.;Lee, Suk-Hwan;Moon, Kwang-Seok;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.8
    • /
    • pp.1453-1459
    • /
    • 2016
  • Recently, vector map has developed, used in many domains, and in most cases vector map data contains confidential information which must be kept away from unauthorized users. Moreover, the manufacturing process of a vector map is complex and the maintenance of a digital map requires substantial monetary and human resources. This paper presents the selective encryption scheme based on polyline simplification methods for GIS vector map data protection to store, transmit or distribute to authorized users. Main advantages of our algorithm are random vertices and transformation processes but it still meets requirements of security by random processes, and this algorithm can be implement to many types of vector map formats.

Selective Encryption Algorithm Based on DCT for GIS Vector Map

  • Giao, Pham Ngoc;Kwon, Gi-Chang;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.7
    • /
    • pp.769-777
    • /
    • 2014
  • With the rapid interest in Geographic Information System (GIS) contents, a large volume of valuable GIS dataset has been distributed illegally by pirates, hackers, or unauthorized users. Therefore the problem focus on how to protect the copyright of GIS vector map data for storage and transmission. At this point, GIS security techniques focusing on secure network and data encryption have been studied and developed to solve the copyright protection and illegal copy prevention for GIS digital map. But GIS vector map data is very large and current data encryption techniques often encrypt all components of data. That means we have encrypted large amount of data lead to the long encrypting time and high complexity computation. This paper presents a novel selective encryption scheme for GIS vector map data protection to store, transmit or distribute to authorized users using K-means algorithm. The proposed algorithm only encrypts a small part of data based on properties of polylines and polygons in GIS vector map but it can change whole data of GIS vector map. Experimental results verified the proposed algorithm effectively and error in decryption is approximately zero.

Selective Encryption Scheme for Vector Map Data using Chaotic Map

  • Bang, N.V.;Moon, Kwang-Seok;Lim, Sanghun;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.7
    • /
    • pp.818-826
    • /
    • 2015
  • With the rapid interest in Geographic Information System (GIS) contents, a large volume of valuable GIS dataset has been distributed illegally by pirates, hackers, or unauthorized users. Therefore the problem focus on how to protect the copyright of GIS vector map data for storage and transmission. But GIS vector map data is very large and current data encryption techniques often encrypt all components of data. That means we have encrypted large amount of data lead to the long encrypting time and high complexity computation. This paper presents the selective encryption scheme using hybrid transform for GIS vector map data protection to store, transmit or distribute to authorized users. In proposed scheme, polylines and polygons in vector map are targets of selective encryption. We select the significant objects in polyline/polygon layer, and then they are encrypted by the key sets generated by using Chaotic map before changing them in DWT, DFT domain. Experimental results verified the proposed algorithm effectively and error in decryption is approximately zero.

Design of Vector Register Architecture in DSP Processor for Efficient Multimedia Processing

  • Wu, Chou-Pin;Wu, Jen-Ming
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.7 no.4
    • /
    • pp.229-234
    • /
    • 2007
  • In this paper, we present an efficient instruction set architecture using vector register file hardware to accelerate operation of general matrix-vector operations in DSP microprocessor. The technique enables in-situ row-access as well as column access to the register files. It can reduce the number of memory access significantly. The technique is especially useful for block-based video signal processing kernels such as FFT/IFFT, DCT/IDCT, and two-dimensional filtering. We have applied the new instruction set architecture to in-loop deblocking filter processing in H.264 decoder. Performance comparisons show that the required load/store operations for the in-loop deblocking filter can be reduced about 42%. The architecture would improve the processing speed, and code density in DSP microprocessor especially for video signal processing substantially.

In vitro Propagation of Transgenic Ginsengs Introduced with Ferritin Light Heavy Chain Gene through Single Embryo Culture (Ferritin Light Heavy Chain 유전자가 도입된 인삼형질전환체의 단일배발생을 통한 식물체의 기내증식)

  • 윤영상;김종학;김무성;양덕춘
    • Korean Journal of Plant Resources
    • /
    • v.17 no.2
    • /
    • pp.161-168
    • /
    • 2004
  • Optimal regeneration conditions of ginseng transformants were studied. It has been known that Ferritin Light Heavy Chain (FLHC) gene remove the several heavy metal by combination, store and transport. To obtain the ginseng tolerant to heavy metal, binary vector was introduced in Agrobacterium by tri-parental mating and then Agrobacterium tumefaciens MP90/FLHC was selected on the AB media and MS media containing kanamycin. Explants were co-cultured with Agrobacterium tumefaciens MP90/FLHC, which contained NPT II as a selectable marker, tadpole ferritin heavy chain (FLHC) gene and human ferritin light chain gene and then a number of embryos were induced. The induced embryo transferred to shooting media consisting of MS medium supplemented with GA 10 mg/L. As a result of examination that induced the normal growth of transfomants, transformants showed the equivalent growth in both root and shoot on the media containing the 1/3 MS.

The Development of the Real Time Target Simulator for the RF Signal of Electronic Warfare using VST and FPGA (VST 및 FPGA를 이용한 전자표적 생성 및 신호 모의장치 개발)

  • Sanghun Song
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.324-334
    • /
    • 2023
  • In this paper, the target simulator for RF signals was developed by using VST(Vector Signal Transceiver) and set by real-time signal processing SW programs. A function to process RF signals using FPGA(Field Programmable Gate Array) board was designed. The system functions capable of data processing, raw signals monitoring, target signals(simulated range, velocity) generating and RF environments data analyzing were implemented. And the characteristics of modulated signal were analyzed in RF environment. All function of programs for processing RF signal have options to store signal data and to manage the data. The validity of the signal simulation was confirmed through verification of simulated signal results.

A Store Recommendation Procedure in Ubiquitous Market for User Privacy (U-마켓에서의 사용자 정보보호를 위한 매장 추천방법)

  • Kim, Jae-Kyeong;Chae, Kyung-Hee;Gu, Ja-Chul
    • Asia pacific journal of information systems
    • /
    • v.18 no.3
    • /
    • pp.123-145
    • /
    • 2008
  • Recently, as the information communication technology develops, the discussion regarding the ubiquitous environment is occurring in diverse perspectives. Ubiquitous environment is an environment that could transfer data through networks regardless of the physical space, virtual space, time or location. In order to realize the ubiquitous environment, the Pervasive Sensing technology that enables the recognition of users' data without the border between physical and virtual space is required. In addition, the latest and diversified technologies such as Context-Awareness technology are necessary to construct the context around the user by sharing the data accessed through the Pervasive Sensing technology and linkage technology that is to prevent information loss through the wired, wireless networking and database. Especially, Pervasive Sensing technology is taken as an essential technology that enables user oriented services by recognizing the needs of the users even before the users inquire. There are lots of characteristics of ubiquitous environment through the technologies mentioned above such as ubiquity, abundance of data, mutuality, high information density, individualization and customization. Among them, information density directs the accessible amount and quality of the information and it is stored in bulk with ensured quality through Pervasive Sensing technology. Using this, in the companies, the personalized contents(or information) providing became possible for a target customer. Most of all, there are an increasing number of researches with respect to recommender systems that provide what customers need even when the customers do not explicitly ask something for their needs. Recommender systems are well renowned for its affirmative effect that enlarges the selling opportunities and reduces the searching cost of customers since it finds and provides information according to the customers' traits and preference in advance, in a commerce environment. Recommender systems have proved its usability through several methodologies and experiments conducted upon many different fields from the mid-1990s. Most of the researches related with the recommender systems until now take the products or information of internet or mobile context as its object, but there is not enough research concerned with recommending adequate store to customers in a ubiquitous environment. It is possible to track customers' behaviors in a ubiquitous environment, the same way it is implemented in an online market space even when customers are purchasing in an offline marketplace. Unlike existing internet space, in ubiquitous environment, the interest toward the stores is increasing that provides information according to the traffic line of the customers. In other words, the same product can be purchased in several different stores and the preferred store can be different from the customers by personal preference such as traffic line between stores, location, atmosphere, quality, and price. Krulwich(1997) has developed Lifestyle Finder which recommends a product and a store by using the demographical information and purchasing information generated in the internet commerce. Also, Fano(1998) has created a Shopper's Eye which is an information proving system. The information regarding the closest store from the customers' present location is shown when the customer has sent a to-buy list, Sadeh(2003) developed MyCampus that recommends appropriate information and a store in accordance with the schedule saved in a customers' mobile. Moreover, Keegan and O'Hare(2004) came up with EasiShop that provides the suitable tore information including price, after service, and accessibility after analyzing the to-buy list and the current location of customers. However, Krulwich(1997) does not indicate the characteristics of physical space based on the online commerce context and Keegan and O'Hare(2004) only provides information about store related to a product, while Fano(1998) does not fully consider the relationship between the preference toward the stores and the store itself. The most recent research by Sedah(2003), experimented on campus by suggesting recommender systems that reflect situation and preference information besides the characteristics of the physical space. Yet, there is a potential problem since the researches are based on location and preference information of customers which is connected to the invasion of privacy. The primary beginning point of controversy is an invasion of privacy and individual information in a ubiquitous environment according to researches conducted by Al-Muhtadi(2002), Beresford and Stajano(2003), and Ren(2006). Additionally, individuals want to be left anonymous to protect their own personal information, mentioned in Srivastava(2000). Therefore, in this paper, we suggest a methodology to recommend stores in U-market on the basis of ubiquitous environment not using personal information in order to protect individual information and privacy. The main idea behind our suggested methodology is based on Feature Matrices model (FM model, Shahabi and Banaei-Kashani, 2003) that uses clusters of customers' similar transaction data, which is similar to the Collaborative Filtering. However unlike Collaborative Filtering, this methodology overcomes the problems of personal information and privacy since it is not aware of the customer, exactly who they are, The methodology is compared with single trait model(vector model) such as visitor logs, while looking at the actual improvements of the recommendation when the context information is used. It is not easy to find real U-market data, so we experimented with factual data from a real department store with context information. The recommendation procedure of U-market proposed in this paper is divided into four major phases. First phase is collecting and preprocessing data for analysis of shopping patterns of customers. The traits of shopping patterns are expressed as feature matrices of N dimension. On second phase, the similar shopping patterns are grouped into clusters and the representative pattern of each cluster is derived. The distance between shopping patterns is calculated by Projected Pure Euclidean Distance (Shahabi and Banaei-Kashani, 2003). Third phase finds a representative pattern that is similar to a target customer, and at the same time, the shopping information of the customer is traced and saved dynamically. Fourth, the next store is recommended based on the physical distance between stores of representative patterns and the present location of target customer. In this research, we have evaluated the accuracy of recommendation method based on a factual data derived from a department store. There are technological difficulties of tracking on a real-time basis so we extracted purchasing related information and we added on context information on each transaction. As a result, recommendation based on FM model that applies purchasing and context information is more stable and accurate compared to that of vector model. Additionally, we could find more precise recommendation result as more shopping information is accumulated. Realistically, because of the limitation of ubiquitous environment realization, we were not able to reflect on all different kinds of context but more explicit analysis is expected to be attainable in the future after practical system is embodied.

Terms Based Sentiment Classification for Online Review Using Support Vector Machine (Support Vector Machine을 이용한 온라인 리뷰의 용어기반 감성분류모형)

  • Lee, Taewon;Hong, Taeho
    • Information Systems Review
    • /
    • v.17 no.1
    • /
    • pp.49-64
    • /
    • 2015
  • Customer reviews which include subjective opinions for the product or service in online store have been generated rapidly and their influence on customers has become immense due to the widespread usage of SNS. In addition, a number of studies have focused on opinion mining to analyze the positive and negative opinions and get a better solution for customer support and sales. It is very important to select the key terms which reflected the customers' sentiment on the reviews for opinion mining. We proposed a document-level terms-based sentiment classification model by select in the optimal terms with part of speech tag. SVMs (Support vector machines) are utilized to build a predictor for opinion mining and we used the combination of POS tag and four terms extraction methods for the feature selection of SVM. To validate the proposed opinion mining model, we applied it to the customer reviews on Amazon. We eliminated the unmeaning terms known as the stopwords and extracted the useful terms by using part of speech tagging approach after crawling 80,000 reviews. The extracted terms gained from document frequency, TF-IDF, information gain, chi-squared statistic were ranked and 20 ranked terms were used to the feature of SVM model. Our experimental results show that the performance of SVM model with four POS tags is superior to the benchmarked model, which are built by extracting only adjective terms. In addition, the SVM model based on Chi-squared statistic for opinion mining shows the most superior performance among SVM models with 4 different kinds of terms extraction method. Our proposed opinion mining model is expected to improve customer service and gain competitive advantage in online store.

Store-Release based Distributed Hydrologic Model with GIS (GIS를 이용한 기저-유출 바탕의 수문모델)

  • Kang, Kwang-Min;Yoon, Se-Eui
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.35-35
    • /
    • 2012
  • Most grid-based distributed hydrologic models are complex in terms of data requirements, parameter estimation and computational demand. To address these issues, a simple grid-based hydrologic model is developed in a geographic information system (GIS) environment using storage-release concept. The model is named GIS Storage Release Model (GIS-StoRM). The storage-release concept uses the travel time within each cell to compute howmuch water is stored or released to the watershed outlet at each time step. The travel time within each cell is computed by combining the kinematic wave equation with Manning's equation. The input to GIS-StoRM includes geospatial datasets such as radar rainfall data (NEXRAD), land use and digital elevation model (DEM). The structural framework for GIS-StoRM is developed by exploiting geographic features in GIS as hydrologic modeling objects, which store and process geospatial and temporal information for hydrologic modeling. Hydrologic modeling objects developed in this study handle time series, raster and vector data within GIS to: (i) exchange input-output between modeling objects, (ii) extract parameters from GIS data; and (iii) simulate hydrologic processes. Conceptual and structural framework of GIS StoRM including its application to Pleasant Creek watershed in Indiana will be presented.

  • PDF

An Improved Fractal Color Image Decoding Based on Data Dependence and Vector Distortion Measure (데이터 의존성과 벡터왜곡척도를 이용한 개선된 프랙탈 칼라영상 복호화)

  • 서호찬;정태일;류권열;권기룡;문광석
    • Journal of Korea Multimedia Society
    • /
    • v.2 no.3
    • /
    • pp.289-296
    • /
    • 1999
  • In this paper, an improved fractal color image decoding method using the data dependence parts and the vector distortion measure is proposed. The vector distortion measure exploits the correlation between different color components. The pixel in RGB color space can be considered as a 30dimensional vector with elements of RGB components. The root mean square error(rms) in RGB color for similarity measure of two blocks R and R' was used. We assume that various parameter necessary in image decoding are stored in the transform table. If the parameter is referenced in decoding image, then decoding is performed by the recursive decoding method. If the parameter is not referenced in decoding image, then the parameters recognize as the data dependence parts and store its in the memory. Non-referenced parts can be decoded only one time, because its domain informations exist in the decoded parts by the recursive decoding method. Non-referenced parts are defined the data dependence parts. Image decoding method using data dependence classifies referenced parts and non-referenced parts using information of transform table. And the proposed method can be decoded only one time for R region decoding speed than Zhang & Po's method, since it is decreased the computational numbers by execution iterated contractive transformations for the referenced range only.

  • PDF