• Title/Summary/Keyword: Vector Matching

Search Result 450, Processing Time 0.027 seconds

A Study on Method for User Gender Prediction Using Multi-Modal Smart Device Log Data (스마트 기기의 멀티 모달 로그 데이터를 이용한 사용자 성별 예측 기법 연구)

  • Kim, Yoonjung;Choi, Yerim;Kim, Solee;Park, Kyuyon;Park, Jonghun
    • The Journal of Society for e-Business Studies
    • /
    • v.21 no.1
    • /
    • pp.147-163
    • /
    • 2016
  • Gender information of a smart device user is essential to provide personalized services, and multi-modal data obtained from the device is useful for predicting the gender of the user. However, the method for utilizing each of the multi-modal data for gender prediction differs according to the characteristics of the data. Therefore, in this study, an ensemble method for predicting the gender of a smart device user by using three classifiers that have text, application, and acceleration data as inputs, respectively, is proposed. To alleviate privacy issues that occur when text data generated in a smart device are sent outside, a classification method which scans smart device text data only on the device and classifies the gender of the user by matching text data with predefined sets of word. An application based classifier assigns gender labels to executed applications and predicts gender of the user by comparing the label ratio. Acceleration data is used with Support Vector Machine to classify user gender. The proposed method was evaluated by using the actual smart device log data collected from an Android application. The experimental results showed that the proposed method outperformed the compared methods.

Tracking and Interpretation of Moving Object in MPEG-2 Compressed Domain (MPEG-2 압축 영역에서 움직이는 객체의 추적 및 해석)

  • Mun, Su-Jeong;Ryu, Woon-Young;Kim, Joon-Cheol;Lee, Joon-Hoan
    • The KIPS Transactions:PartB
    • /
    • v.11B no.1
    • /
    • pp.27-34
    • /
    • 2004
  • This paper proposes a method to trace and interpret a moving object based on the information which can be directly obtained from MPEG-2 compressed video stream without decoding process. In the proposed method, the motion flow is constructed from the motion vectors included in compressed video. We calculate the amount of pan, tilt, and zoom associated with camera operations using generalized Hough transform. The local object motion can be extracted from the motion flow after the compensation with the parameters related to the global camera motion. Initially, a moving object to be traced is designated by user via bounding box. After then automatic tracking Is performed based on the accumulated motion flows according to the area contributions. Also, in order to reduce the cumulative tracking error, the object area is reshaped in the first I-frame of a GOP by matching the DCT coefficients. The proposed method can improve the computation speed because the information can be directly obtained from the MPEG-2 compressed video, but the object boundary is limited by macro-blocks rather than pixels. Also, the proposed method is proper for approximate object tracking rather than accurate tracing of an object because of limited information available in the compressed video data.

A Smart Image Classification Algorithm for Digital Camera by Exploiting Focal Length Information (초점거리 정보를 이용한 디지털 사진 분류 알고리즘)

  • Ju, Young-Ho;Cho, Hwan-Gue
    • Journal of the Korea Computer Graphics Society
    • /
    • v.12 no.4
    • /
    • pp.23-32
    • /
    • 2006
  • In recent years, since the digital camera has been popularized, so users can easily collect hundreds of photos in a single usage. Thus the managing of hundreds of digital photos is not a simple job comparing to the keeping paper photos. We know that managing and classifying a number of digital photo files are burdensome and annoying sometimes. So people hope to use an automated system for managing digital photos especially for their own purposes. The previous studies, e.g. content-based image retrieval, were focused on the clustering of general images, which it is not to be applied on digital photo clustering and classification. Recently, some specialized clustering algorithms for images clustering digital camera images were proposed. These algorithms exploit mainly the statistics of time gap between sequent photos. Though they showed a quite good result in image clustering for digital cameras, still lots of improvements are remained and unsolved. For example the current tools ignore completely the image transformation with the different focal lengths. In this paper, we present a photo considering focal length information recorded in EXIF. We propose an algorithms based on MVA(Matching Vector Analysis) for classification of digital images taken in the every day activity. Our experiment shows that our algorithm gives more than 95% success rates, which is competitive among all available methods in terms of sensitivity, specificity and flexibility.

  • PDF

Integration of Motion Compensation Algorithm for Predictive Video Coding (예측 비디오 코딩을 위한 통합 움직임 보상 알고리즘)

  • Eum, Ho-Min;Park, Geun-Soo;Song, Moon-Ho
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.12
    • /
    • pp.85-96
    • /
    • 1999
  • In a number of predictive video compression standards, the motion is compensated by the block-based motion compensation (BMC). The effective motion field used for the prediction by the BMC is obviously discontinuous since one motion vector is used for the entire macro-block. The usage of discontinuous motion field for the prediction causes the blocky artifacts and one obvious approach for eliminating such artifacts is to use a smoothed motion field. The optimal procedure will depend on the type of motion within the video. In this paper, several procedures for the motion vectors are considered. For any interpolation or approaches, however, the motion vectors as provided by the block matching algorithm(BMA) are no longer optimal. The optimum motion vectors(still one per macro-block) must minimize the of the displaced frame difference (DFD). We propose a unified algorithm that computes the optimum motion vectors to minimize the of the DFD using a conjugate gradient search. The proposed algorithm has been implemented and tested for the affine transformation based motion compensation (ATMC), the bilinear transformation based motion compensation (BTMC) and our own filtered motion compensation(FMC). The performance of these different approaches will be compared against the BMC.

  • PDF

Design of High-Performance Motion Estimation Circuit for H.264/AVC Video CODEC (H.264/AVC 동영상 코덱용 고성능 움직임 추정 회로 설계)

  • Lee, Seon-Young;Cho, Kyeong-Soon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.7
    • /
    • pp.53-60
    • /
    • 2009
  • Motion estimation for H.264/AVC video CODEC is very complex and requires a huge amount of computational efforts because it uses multiple reference frames and variable block sizes. We propose the architecture of high-performance integer-pixel motion estimation circuit based on fast algorithms for multiple reference frame selection, block matching, block mode decision and motion vector estimation. We also propose the architecture of high-performance interpolation circuit for sub-pixel motion estimation. We described the RTL circuit in Verilog HDL and synthesized the gate-level circuit using 130nm standard cell library. The integer-pixel motion estimation circuit consists of 77,600 logic gates and four $32\times8\times32$-bit dual-port SRAM's. It has tile maximum operating frequency of 161MHz and can process up to 51 D1 (720$\times$480) color in go frames per second. The fractional motion estimation circuit consists of 22,478 logic gates. It has the maximum operating frequency of 200MHz and can process up to 69 1080HD (1,920$\times$1,088) color image frames per second.

A Study on the Basic Mathematical Competency Levels of Freshmen Students in Radiology Department (방사선과 신입생의 기초 수리능력 수준에 대한 연구)

  • Jang, Hyon Chol;Cho, Pyong Kon
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.2
    • /
    • pp.121-127
    • /
    • 2020
  • The era of the Fourth Industrial Revolution is increasingly demanding mathematical competencies for virtual reality (VR), artificial intelligence (AI) and the like. In this context, this study intended to identify the basic mathematical competency levels of university freshman students in radiology department and to provide basic data thereon. For this, the diagnostic assessment of basic learning competencies for the domain of mathematics was conducted from June 17, 2019 to June 28, 2019 among 78 freshman students of radiology department at S university and D university. As a result, the university students' overall basic mathematical competency levels were diagnosed to be excellent. However, their levels in the sectors of the geometry and vector and the probability and statistics were diagnosed to be moderate, with the mean scores of 2.61 points and 2.64 points, respectively, which were found to be lower than those of the other sections. As for basic mathematical competency levels according to genders, the levels of male students and female students were diagnosed to be excellent, with the mean scores of 17.48 points and 16.29 points, respectively, showing no statistically significant difference (p>0.05). Given the small number of subjects and regional restriction, there might be some limitations in the generalization of the findings of the present study to all university freshman students and all departments. The above results suggest that it is necessary to implement various programs such as student level-based special lectures for enhancing basic mathematical competencies relating to major in order to improve the basic mathematical competencies of freshman students in radiology department, and that it is necessary to increase the students' mathematical competencies by offering major math courses in the curriculum and applying teaching-learning methods matching students' levels.

Applying of SOM for Automatic Recognition of Tension and Relaxation (긴장과 이완상태의 자동인식을 위한 SOM의 적용)

  • Jeong, Chan-Soon;Ham, Jun-Seok;Ko, Il-Ju;Jang, Dae-Sik
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.2
    • /
    • pp.65-74
    • /
    • 2010
  • We propose a system that automatically recognizes the tense or relaxed condition of scrolling-shooting game subject that plays. Existing study compares the changed values of source of stimulation to the player by suggesting the source, and thus involves limitation in automatic classification. This study applies SOM of unsupervised learning for automatic classification and recognition of player's condition change. Application of SOM for automatic recognition of tense and relaxed condition is composed of two steps. First, ECG measurement and analysis, is to extract characteristic vector through HRV analysis by measuring ECG after having the player play the game. Secondly, SOM learning and recognition, is to classify and recognize the tense and relaxed conditions of player through SOM learning of the input vectors of heart beat signals that the characteristic extracted. Experiment results are divided into three groups. The first is HRV frequency change and the second the SOM learning results of heart beat signal. The third is the analysis of match rate to identify SOM learning performance. As a result of matching the LF/HF ratio of HRV frequency analysis to the distance of winner neuron of SOM based on 1.5, a match rate of 72% performance in average was shown.

Accuracy Evaluation of Pre- and Post-treatment Setup Errors in CBCT-based Stereotactic Body Radiation Therapy (SBRT) for Lung Tumor (CBCT 기반 폐 종양 정위 신체 방사선 요법(SBRT)에서 치료 전·후 set up 에러의 정확도 평가)

  • Jang, Eun-Sung;Choi, Ji-Hoon
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.6
    • /
    • pp.861-867
    • /
    • 2021
  • Since SBRT takes up to 1 hour from 30 minutes to treatment fraction once or three to five times, there is a possibility of setup error during treatment. To reduce these set-up errors and give accurate doses, we intend to evaluate the usefulness of pre-treatment and post-treatment error values by imaging CBCT again to determine postural movement due to pre-treatment coordinate values using pre-treatment CBCT. On average, the range of systematic errors was 0.032 to 0.17 on the X and Y,Z axes, confirming that there was very little change in movement even after treatment. Tumor centripetal changes (±SD) due to respiratory tuning were 0.11 (±0.12) cm, 0.27 (±0.15) cm, and 0.21 cm (±0.31 cm) in the X, Y and Z directions. The tumor edges ±SD were 0.21 (±0.18) cm, 0.30 (±0.23) cm, and 0.19 cm (±0.26) cm in the X, Y and Z directions. The (±SD) of tumor-corrected displacements were 0.03 (±0.16) cm, 0.05 (±0.26) cm, and 0.02 (±0.23) cm in RL, AP, and SI directions, respectively. The range of the 3D vector value was 0.11 to 0-.18 cm on average when comparing pre-treatment and CBCT, and it was confirmed that the corrected set-up error was within 0.3 cm. Therefore, it was confirmed that there were some changes in values depending on some older patients, condition on the day of treatment, and body type, but they were within the significance range.

The Study on New Radiating Structure with Multi-Layered Two-Dimensional Metallic Disk Array for Shaping flat-Topped Element Pattern (구형 빔 패턴 형성을 위한 다층 이차원 원형 도체 배열을 갖는 새로운 방사 구조에 대한 연구)

  • 엄순영;스코벨레프;전순익;최재익;박한규
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.7
    • /
    • pp.667-678
    • /
    • 2002
  • In this paper, a new radiating structure with a multi-layered two-dimensional metallic disk array was proposed for shaping the flat-topped element pattern. It is an infinite periodic planar array structure with metallic disks finitely stacked above the radiating circular waveguide apertures. The theoretical analysis was in detail performed using rigid full-wave analysis, and was based on modal representations for the fields in the partial regions of the array structure and for the currents on the metallic disks. The final system of linear algebraic equations was derived using the orthogonal property of vector wave functions, mode-matching method, boundary conditions and Galerkin's method, and also their unknown modal coefficients needed for calculation of the array characteristics were determined by Gauss elimination method. The application of the algorithm was demonstrated in an array design for shaping the flat-topped element patterns of $\pm$20$^{\circ}$ beam width in Ka-band. The optimal design parameters normalized by a wavelength for general applications are presented, which are obtained through optimization process on the basis of simulation and design experience. A Ka-band experimental breadboard with symmetric nineteen elements was fabricated to compare simulation results with experimental results. The metallic disks array structure stacked above the radiating circular waveguide apertures was realized using ion-beam deposition method on thin polymer films. It was shown that the calculated and measured element patterns of the breadboard were in very close agreement within the beam scanning range. The result analysis for side lobe and grating lobe was done, and also a blindness phenomenon was discussed, which may cause by multi-layered metallic disk structure at the broadside. Input VSWR of the breadboard was less than 1.14, and its gains measured at 29.0 GHz. 29.5 GHz and 30 GHz were 10.2 dB, 10.0 dB and 10.7 dB, respectively. The experimental and simulation results showed that the proposed multi-layered metallic disk array structure could shape the efficient flat-topped element pattern.

A Study on Automatic Classification Model of Documents Based on Korean Standard Industrial Classification (한국표준산업분류를 기준으로 한 문서의 자동 분류 모델에 관한 연구)

  • Lee, Jae-Seong;Jun, Seung-Pyo;Yoo, Hyoung Sun
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.3
    • /
    • pp.221-241
    • /
    • 2018
  • As we enter the knowledge society, the importance of information as a new form of capital is being emphasized. The importance of information classification is also increasing for efficient management of digital information produced exponentially. In this study, we tried to automatically classify and provide tailored information that can help companies decide to make technology commercialization. Therefore, we propose a method to classify information based on Korea Standard Industry Classification (KSIC), which indicates the business characteristics of enterprises. The classification of information or documents has been largely based on machine learning, but there is not enough training data categorized on the basis of KSIC. Therefore, this study applied the method of calculating similarity between documents. Specifically, a method and a model for presenting the most appropriate KSIC code are proposed by collecting explanatory texts of each code of KSIC and calculating the similarity with the classification object document using the vector space model. The IPC data were collected and classified by KSIC. And then verified the methodology by comparing it with the KSIC-IPC concordance table provided by the Korean Intellectual Property Office. As a result of the verification, the highest agreement was obtained when the LT method, which is a kind of TF-IDF calculation formula, was applied. At this time, the degree of match of the first rank matching KSIC was 53% and the cumulative match of the fifth ranking was 76%. Through this, it can be confirmed that KSIC classification of technology, industry, and market information that SMEs need more quantitatively and objectively is possible. In addition, it is considered that the methods and results provided in this study can be used as a basic data to help the qualitative judgment of experts in creating a linkage table between heterogeneous classification systems.