• Title/Summary/Keyword: Vector Machine

Search Result 2,216, Processing Time 0.022 seconds

Sensorless Vector Controlled Induction Machine in Field Weakening Region: Comparing MRAS and ANN-Based Speed Estimators

  • Moulahoum, Samir;Touhami, Omar
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.241-248
    • /
    • 2007
  • The accuracy of all the schemes that belong to vector controlled induction machine drives is strongly affected by parameter variations. The aim of this paper is to examine iron losses and magnetic saturation effect in sensorless vector control of induction machines. At first, an approach to induction machine modelling and vector control scheme, which account for both iron loss and saturation, is presented. Then, a model reference adaptive system (MRAS) based speed estimator is developed. The speed estimation is modified in such a way that iron losses and the variation in the saturation level are compensated. Thus by substituting an artificial neural network flux estimator into the MRAS speed estimator. Experimental results are presented to verify the effectiveness of the proposed approach.

An Early Warning Model for Student Status Based on Genetic Algorithm-Optimized Radial Basis Kernel Support Vector Machine

  • Hui Li;Qixuan Huang;Chao Wang
    • Journal of Information Processing Systems
    • /
    • v.20 no.2
    • /
    • pp.263-272
    • /
    • 2024
  • A model based on genetic algorithm optimization, GA-SVM, is proposed to warn university students of their status. This model improves the predictive effect of support vector machines. The genetic optimization algorithm is used to train the hyperparameters and adjust the kernel parameters, kernel penalty factor C, and gamma to optimize the support vector machine model, which can rapidly achieve convergence to obtain the optimal solution. The experimental model was trained on open-source datasets and validated through comparisons with random forest, backpropagation neural network, and GA-SVM models. The test results show that the genetic algorithm-optimized radial basis kernel support vector machine model GA-SVM can obtain higher accuracy rates when used for early warning in university learning.

Improving Learning Performance of Support Vector Machine using the Kernel Relaxation and the Dynamic Momentum (Kernel Relaxation과 동적 모멘트를 조합한 Support Vector Machine의 학습 성능 향상)

  • Kim, Eun-Mi;Lee, Bae-Ho
    • The KIPS Transactions:PartB
    • /
    • v.9B no.6
    • /
    • pp.735-744
    • /
    • 2002
  • This paper proposes learning performance improvement of support vector machine using the kernel relaxation and the dynamic momentum. The dynamic momentum is reflected to different momentum according to current state. While static momentum is equally influenced on the whole, the proposed dynamic momentum algorithm can control to the convergence rate and performance according to the change of the dynamic momentum by training. The proposed algorithm has been applied to the kernel relaxation as the new sequential learning method of support vector machine presented recently. The proposed algorithm has been applied to the SONAR data which is used to the standard classification problems for evaluating neural network. The simulation results of proposed algorithm have better the convergence rate and performance than those using kernel relaxation and static momentum, respectively.

Learning and Performance Comparison of Multi-class Classification Problems based on Support Vector Machine (지지벡터기계를 이용한 다중 분류 문제의 학습과 성능 비교)

  • Hwang, Doo-Sung
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.7
    • /
    • pp.1035-1042
    • /
    • 2008
  • The support vector machine, as a binary classifier, is known to surpass the other classifiers only in binary classification problems through the various experiments. Even though its theory is based on the maximal margin classifier, the support vector machine approach cannot be easily extended to the multi-classification problems. In this paper, we review the extension techniques of the support vector machine toward the multi-classification and do the performance comparison. Depending on the data decomposition of the training data, the support vector machine is easily adapted for a multi-classification problem without modifying the intrinsic characteristics of the binary classifier. The performance is evaluated on a collection of the benchmark data sets and compared according to the selected teaming strategies, the training time, and the results of the neural network with the backpropagation teaming. The experiments suggest that the support vector machine is applicable and effective in the general multi-class classification problems when compared to the results of the neural network.

  • PDF

Early Software Quality Prediction Using Support Vector Machine (Support Vector Machine을 이용한 초기 소프트웨어 품질 예측)

  • Hong, Euy-Seok
    • Journal of Information Technology Services
    • /
    • v.10 no.2
    • /
    • pp.235-245
    • /
    • 2011
  • Early criticality prediction models that determine whether a design entity is fault-prone or not are becoming more and more important as software development projects are getting larger. Effective predictions can reduce the system development cost and improve software quality by identifying trouble-spots at early phases and proper allocation of effort and resources. Many prediction models have been proposed using statistical and machine learning methods. This paper builds a prediction model using Support Vector Machine(SVM) which is one of the most popular modern classification methods and compares its prediction performance with a well-known prediction model, BackPropagation neural network Model(BPM). SVM is known to generalize well even in high dimensional spaces under small training data conditions. In prediction performance evaluation experiments, dimensionality reduction techniques for data set are not used because the dimension of input data is too small. Experimental results show that the prediction performance of SVM model is slightly better than that of BPM and polynomial kernel function achieves better performance than other SVM kernel functions.

A Study of General AC Machine Modeling with Matrix Vector Using DQ Transformation

  • Hong, Sun-Ki
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.8
    • /
    • pp.98-104
    • /
    • 2013
  • AC machines are in wide use in industry and d-q transformation from 3 phase of a, b, c is commonly used to analyze these kinds of machines. The equivalent circuits of d and q axis are, however, generally cross coupled and difficult to analyze. In this study, a modeling technique of AC machine including induction and PM synchronous motors using matrix vector is proposed. With that model, it can not only explain the AC machines physically but also make it simple to analyze them. The separating process of d and q components is not needed in this model and this model can be applied to analyze asymmetric motors like IPMSM machine. With this technique, the model becomes simple, easy to understand physically, and yields results that are the same as those from other models. These simulation results of the proposed model for induction motor are compared with those of other models to verify the method proposed.

Support Vector Machine based on Stratified Sampling

  • Jun, Sung-Hae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.9 no.2
    • /
    • pp.141-146
    • /
    • 2009
  • Support vector machine is a classification algorithm based on statistical learning theory. It has shown many results with good performances in the data mining fields. But there are some problems in the algorithm. One of the problems is its heavy computing cost. So we have been difficult to use the support vector machine in the dynamic and online systems. To overcome this problem we propose to use stratified sampling of statistical sampling theory. The usage of stratified sampling supports to reduce the size of training data. In our paper, though the size of data is small, the performance accuracy is maintained. We verify our improved performance by experimental results using data sets from UCI machine learning repository.

An analysis of satisfaction index on computer education of university using kernel machine (커널머신을 이용한 대학의 컴퓨터교육 만족도 분석)

  • Pi, Su-Young;Park, Hye-Jung;Ryu, Kyung-Hyun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.5
    • /
    • pp.921-929
    • /
    • 2011
  • In Information age, the academic liberal art Computer education course set up goals for promoting computer literacy and for developing the ability to cope actively with in Information Society and for improving productivity and competition among nations. In this paper, we analyze on discovering of decisive property and satisfaction index to have a influence on computer education on university students. As a preprocessing method, the proposed method select optimum property using correlation feature selection of machine learning tool based on Java and then we use multiclass least square support vector machine based on statistical learning theory. After applying that compare with multiclass support vector machine and multiclass least square support vector machine, we can see the fact that the proposed method have a excellent result like multiclass support vector machine in analysis of the academic liberal art computer education satisfaction index data.

An Application of Support Vector Machines to Personal Credit Scoring: Focusing on Financial Institutions in China (Support Vector Machines을 이용한 개인신용평가 : 중국 금융기관을 중심으로)

  • Ding, Xuan-Ze;Lee, Young-Chan
    • Journal of Industrial Convergence
    • /
    • v.16 no.4
    • /
    • pp.33-46
    • /
    • 2018
  • Personal credit scoring is an effective tool for banks to properly guide decision profitably on granting loans. Recently, many classification algorithms and models are used in personal credit scoring. Personal credit scoring technology is usually divided into statistical method and non-statistical method. Statistical method includes linear regression, discriminate analysis, logistic regression, and decision tree, etc. Non-statistical method includes linear programming, neural network, genetic algorithm and support vector machine, etc. But for the development of the credit scoring model, there is no consistent conclusion to be drawn regarding which method is the best. In this paper, we will compare the performance of the most common scoring techniques such as logistic regression, neural network, and support vector machines using personal credit data of the financial institution in China. Specifically, we build three models respectively, classify the customers and compare analysis results. According to the results, support vector machine has better performance than logistic regression and neural networks.

Modifying linearly non-separable support vector machine binary classifier to account for the centroid mean vector

  • Mubarak Al-Shukeili;Ronald Wesonga
    • Communications for Statistical Applications and Methods
    • /
    • v.30 no.3
    • /
    • pp.245-258
    • /
    • 2023
  • This study proposes a modification to the objective function of the support vector machine for the linearly non-separable case of a binary classifier yi ∈ {-1, 1}. The modification takes into account the position of each data item xi from its corresponding class centroid. The resulting optimization function involves the centroid mean vector, and the spread of data besides the support vectors, which should be minimized by the choice of hyper-plane β. Theoretical assumptions have been tested to derive an optimal separable hyperplane that yields the minimal misclassification rate. The proposed method has been evaluated using simulation studies and real-life COVID-19 patient outcome hospitalization data. Results show that the proposed method performs better than the classical linear SVM classifier as the sample size increases and is preferred in the presence of correlations among predictors as well as among extreme values.