최근, 동작 상상(Motor Imagery) Electroencephalogram(EEG)를 기반으로 한 Brain-Computer Interface(BCI) 시스템은 의학, 공학 등 다양한 분야에서 많은 관심을 받고 있다. Common Spatial Pattern(CSP) 알고리즘은 동작 상상 EEG의 특징을 추출하기 위한 가장 유용한 방법이다. 그러나 CSP 알고리즘은 공분산 행렬에 의존하기 때문에 Small-Sample Setting(SSS) 상황에서 성능에 한계가 있다. 또한 사용하는 주파수 대역에 따라 큰 성능 차이를 보인다. 이러한 문제를 동시에 해결하기 위해, 4-40Hz 대역 EEG 신호를 9개의 필터 뱅크를 이용하여 분할하고 각 밴드에 Regularized CSP(R-CSP)를 적용한다. 이후 Mutual Information-Based Individual Feature(MIBIF) 알고리즘은 R-CSP의 차별적인 특징을 선택하기 위해 사용된다. 본 연구에서는 대뇌 피질의 운동영역 부근 18개 채널을 사용하여 BCI CompetitionIII DatasetIVa의 피험자 다섯 명(aa, al, av, aw 및 ay)에 대해 각각 87.5%, 100%, 63.78%, 82.14% 및 86.11%의 정확도를 도출하였다. 제안된 방법은 CSP, R-CSP 및 FBCSP 방법보다 16.21%, 10.77% 및 3.32%의 평균 분류 정확도 향상이 있었다. 특히, 본 논문에서 제안한 방법은 SSS 상황에서 우수한 성능을 보였다.
본 논문에서는 시차영상 생성과 레이블링(labeling)을 동시에 수행하는 빌보드 스윕 스테레오 시차정합 알고리즘을 적용하고, 두 단계로 구성된 복합 가설생성(hypothesis generation) 단계를 적용함으로서 거짓알림(false alarm)을 줄이고, 차량 검출의 정확도를 높이는 방법을 제안한다. 먼저 차량의 정면에 장착된 두 대의 카메라를 이용하여 영상을 획득하고, 이 영상을 사용하여 빌보드 스윕 스테레오 시차정합 알고리즘을 수행하여 지면과 배경이 제거된 장애물(obstacle)만이 존재하는 특수한 형태의 시차영상을 생성한다. 이렇게 생성된 지면과 배경이 제거된 레이블링된 시차영상을 이용하여 차량 검출 및 추적을 수행한다. 차량 검출 및 추적단계는 크게 세 단계로 나눠진다. 첫 번째 단계는 학습 단계로서 학습데이터로부터 Gabor필터를 사용해서 특징점을 추출하고, 추출된 특징점을 학습한 뒤 서포트 벡터머신 분류기를 생성하는 단계이다. 두 번째 단계는 스테레오 카메라의 영상 중 주 카메라의 영상으로부터 에지 정보를 추출하고, 지면과 배경이 제거된 시차 영상으로부터 얻어진 시차정보를 이용해서 차량이 존재하는 후보영역을 뽑은 뒤 서포트 벡터머신 분류기를 사용하여 차량을 검출하는 단계이다. 마지막 단계는 차량 추적단계로서 검출이 완료된 차량들은 다음 프레임에서 템플릿 매칭을 수행하여 추적한다. 이는 추적에 성공할 경우 다음 프레임의 차량 검출시 후보영역에서 배제함으로서 전체적인 차량 검출 성능을 향상시킨다.
외환위기 이후 본격적으로 시작된 외국계 대형 은행의 국내 진출 및 선진 금융상품의 수입은 국내 은행 산업 구조와 환경을 변화시키고 경쟁을 가속화시켰다. 앞으로 일어날 변화 및 추세에 대한 정확한 예측은 경쟁이 치열한 환경에서 국내의 은행이 생존하고 발전하기 위해 필수적인 요소이며 그 중에서도 대출 신청 고객에 대한 승인 여부에 대한 예측은 대출 상품이 은행 경영에 있어 가장 큰 비중을 차지하는 수익의 원천이자 신용 리스크 관리의 중심이 된다는 점에서 큰 의미가 있다. 따라서 본 논문에서는 대출 심사 결과의 예측 정확성을 높이기 위한 방법을 제시하고자 한다. 수행 단계로는 상관관계 분석과 특징선택 기법을 통해 대출승인 결과에 유의한 영향을 주는 예측변수들을 선별하고 선별된 변수로 2-Step 군집화 기법을 통해 고객을 군집화 하였다. 이후 각 군집에 LR, NN, SVM 기법을 활용하여 구축한 예측 모형을 적용하여 정확도가 가장 높은 모형을 찾아보았다. 최종적으로 기존 방식의 대출 심사 모형에 LR, NN, SVM 예측 모형을 적용했을 때 산출된 결과와 제안한 모형의 결과를 비교하여 예측의 정확도를 평가하였다.
본 논문은 파력 에너지 수집 장치에 사용할 수 있는 영구자석 선형 동기발전기의 특성 해석에 관한 것이다. 파력 에너지는 요요시스템과 같은 기구로 부터 얻어진다. 영구자석을 이용한 선형 발전기는 영구자석의 자력을 통해 별도의 전원공급이 필요 없고 유지 보수가 간단한 장점을 가지고 있다. 또한 높은 에너지 밀도를 갖는 희토류의 사용으로 영구자석 기기는 소형화 및 경량화가 가능하며 보다 높은 에너지 변환 효율을 얻을 수 있다. 영구자석 선형 동기발전기 특성 해석을 위해 2차원 극 좌표계 및 자기 벡터 포텐셜에 근거하여 영구자석과 전기자 반작용 자계해석을 수행 하였다. 해석 해를 이용하여 정현적인 속도입력에 의해 유도되는 유기기전력의 특성 식을 유도하고, 동일한 방법으로 역기전력 상수, 저항, 자기인덕턴스와 상호인덕턴스와 같은 전기적 파라미터를 얻었다. 본 논문에서 사용한 공간고조파법의 결과는 2차원 유한요소해석법 결과와 비교하여 잘 일치하는 것을 확인하였다. 이 결과는 영구자석 형 선형 발전기의 특성을 이해하는 것과 해석방법의 비교연구, 설계 최적화, 그리고 기기의 동적 모델링에 기여할 수 있다.
일반적인 지문 인식기에서 이용되는 미뉴셔 특징은 표현 공격에는 강건하지만 오 정합률이 상대적으로 높다는 약점이 있다. 따라서 미뉴셔 특징은 스켈리톤 영상과 함께 이용되는 경향이 있다. 보통 지문의 미뉴셔 특징에 대한 보안 취약성 연구는 많이 진행되어 있으나 스켈리톤에 대한 취약성 연구는 미약한 형편이므로 본 연구에서는 스켈리톤에 대한 표현 공격의 취약성을 분석하고자 한다. 이를 위해, 본 연구에서는 지문의 스켈리톤으로부터 학습 알고리즘을 사용해 원래의 지문을 복구하는 방법을 제시한다. 본 논문에서 제시된 방법은 기존의 Pix2Pix 모델에 잠재 벡터를 추가한 새로운 학습 모델인 Pix2Pix을 제안하여, 보다 자연스러운 지문을 생성한다. 본 논문의 실험 결과에서는 제시된 학습 알고리즘을 이용해 원래의 지문을 복원한 다음, 복원된 지문을 지문 인식기에 입력시켜 높은 인식률을 달성하였다. 그러므로 본 연구는 스켈리톤을 함께 이용하는 지문 인식기는 표현 공격에 취약함을 검증하였다. 본 논문에서 제시된 접근방법은 지문 인식 및 복원, 비디오 보안, 생체 인식 등과 연관된 많은 실제적인 응용 분야에서 유용하게 사용될 것으로 기대된다.
회사채 신용 등급 예측 모형에 대한 연구는 신용 평가 기관이 회사채 신용 등급 평가에 사용될 것이라 예상 되는 여러 재무적 특성 변수들을 기반으로 진행되었으며 선형 회귀 모형(linear regression), 순위 로짓(ordered logit), 순위 프로빗(ordered probit), 서포트 벡터 기계(support vector machine), 랜덤 포레스트(random forest) 등 다양한 모형들을 적용하여 개발되었다. 하지만 기존 연구들에서 고려한 회사채 신용 등급은 연구에 따라 5등급에서 20등급까지 다른 등급 구간을 적용하였으며 분석에 이용된 표본 자료의 기간 및 대상도 상이하여 예측 성능의 공정한 비교에 어려움이 있다. 따라서 본 연구에서는 2013년부터 2017년까지의 회사채 신용 등급 자료와 기존 연구들에서 사용된 재무 지표들을 통합하여 기존에 발표된 예측 모형들을 동일한 자료에 적용하고 예측 성능을 비교하였다. 추가적으로 Elastic-net 벌점화 회귀 모형 및 순위 로짓, 순위 프로빗 모형을 적합하여 LASSO 벌점이 선택됨을 확인하였으며 LASSO 벌점을 고려한 예측 모형이 대응하는 기존의 예측 모형들보다 향상된 성능을 보임을 확인하였다. 본 연구의 수행 결과, 랜덤 포레스트를 이용한 예측 모형이 15등급 기준 검증 자료에서 정확한 등급 예측률이 69.6%로 다른 모형과 비교하여 높은 예측 성능을 나타내었다.
The feasibility of the application of terahertz electromagnetic waves in the diagnosis of prostate cancer was examined. Four samples of incomplete cancerous prostatic paraffin-embedded tissues were examined using terahertz spectral imaging (TPI) system and the results obtained by comparing the absorption coefficient and refractive index of prostate tumor, normal prostate tissue and smooth muscle from one of the paraffin tissue masses examined were reported. Three hundred and sixty cases of absorption coefficients from one of the paraffin tissues examined were used as raw data to classify these three tissues using the Principal Component Analysis (PCA) and Least Squares Support Vector Machine (LS-SVM). An excellent classification with an accuracy of 92.22% in the prediction set was achieved. Using the distribution information of THz reflection signal intensity from sample surface and absorption coefficient of the sample, an attempt was made to use the TPI system to identify the boundaries of the different tissues involved (prostate tumors, normal and smooth muscles). The location of three identified regions in the terahertz images (frequency domain slice absorption coefficient imaging, 1.2 THz) were compared with those obtained from the histopathologic examination. The tissue tumor region had a distinctively visible color and could well be distinguished from other tissue regions in terahertz images. Results indicate that a THz spectroscopy imaging system can be efficiently used in conjunction with the proposed advanced computer-based mathematical analysis method to identify tumor regions in the paraffin tissue mass of prostate cancer.
본 논문은 개인 사용자의 트윗을 분석하여 사용자의 감정 흐름을 모니터링할 수 있는 새로운 방법을 제안한다. 본 논문에서는 사용자의 감성 흐름을 정확하게 예측하기 위해서 기존의 텍스트 위주의 시스템과 달리 본 연구에서는 사용자가 쓴 텍스트와 영상 등으로부터 감성을 인식하는 멀티 모달 분석 기법이 개발된다. 제안된 방법에서는 먼저 어휘분석 및 문맥을 이용한 텍스트분석기와 학습기반의 영상감성인식기를 이용하여 텍스트 및 영상 트윗에 숨겨진 개별 감성을 추출한다. 이후 이들은 규칙기반 통합 방법에 의해 날짜별로 통합되고, 마지막으로 개인의 감성흐름을 보다 직관적으로 관측할 수 있도록 감성흐름그래프로 시각화한다. 제안된 방법의 효용성을 평가하기 위해 두 단계의 실험이 수행되었다. 먼저 4만여 개의 트윗으로부터 제안된 방법의 정확도 평가 실험이 수행되고, 최신 트윗 분석 기술과 비교 분석되었다. 두 번째 실험에서는 40명의 우울증을 가진 사용자와 일반사용자를 구분할 수 있는지에 대한 실험이 수행된 결과, 제안된 기술이 실제 사용자의 감성흐름을 모니터하는데 효율적임을 증명하였다.
본 연구는 심박변이도(HRV)와 인공신경망을 이용하여 강건하고 정확한 융복합 감정예측 모형인 EPNN (Emotion Prediction Neural Network)을 개발하는 것을 주요 연구목적으로 한다. 본 연구에서 제안하는 EPNN은 기존 유사연구와는 달리 은닉노드의 활성함수로서 하이퍼볼릭 탄젠트, 선형, 가우시안 함수를 융복합적으로 이용하여 모형의 정확도를 향상시킨다. 본 연구에서는 EPNN의 타당성을 검증하기 위하여 20명의 실험자를 대상으로 머니게임으로 감정을 유도한 후에 해당 실험자의 심박변이도 측정값을 입력자료로 사용하였다. 아울러 그들의 Valence와 Arousal을 EPNN의 출력값으로 사용하였다. 실험결과 Valence에 대한 F-Measure는 80%이고, Arousal의 경우 95%로 나타났다. 한편 EPNN의 타당성을 측정하기 위하여 기존 감정예측 연구에 사용된 경쟁모형인 인공신경망, 로지스틱 회귀분석, 서포트 벡터 머신, 랜덤 포레스트 모형과 성과를 비교하였다. 그 결과 본 연구에서 제안하는 EPNN이 더 우수한 감정예측 결과를 보였다. 본 연구의 결과는 향후 유비쿼터스 디지털 헬스 환경에서 사용되는 다양한 웨어러블 기기에 적용되어 사용자들의 일상생활 속에서 시시각각 변하는 감정을 정확히 예측하고 적절하게 관리하는데 적용될 수 있을 것이다.
본 논문에서는 무릎 MR 영상에서 반월상 연골의 자동 위치화, 다중 아틀라스 기반 지역적 가중 투표를 통한 반월상 연골 분할 및 패치 기반 윤곽선 특징 분류를 통한 반월상 연골 자동 분할 방법을 제안한다. 첫째, 뼈와 무릎 관절 연골을 분할한 후 이를 이용하여 반월상 연골의 관심볼륨영역을 자동 위치화한다. 둘째, 반월상 연골의 관심볼륨영역에서 형상 및 밝기값 분포 가중치를 고려한 다중 아틀라스 기반 지역적 가중 투표를 통해 반월상 연골을 분할한다. 셋째, 밝기값이 유사한 측부 인대로의 누출을 제거하기 위해 형상 및 거리 가중치를 고려한 패치 기반 윤곽선 특징 분류를 통해 반월상 연골 분함을 개선한다. 제안 방법을 통한 분할 결과와 수동 분할 결과 간 다이스 유사계수는 내측 반월상 연골은 80.13%, 외측 반월상 연골은 80.81%를 보였으며 다중 아틀라스 기반 지역적 가중투표를 통한 분할 방법과 비교하여 내 측 및 외측 반월상 연 골 각각 7.25%, 1.31% 향상되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.