• 제목/요약/키워드: Vector Machine

검색결과 2,216건 처리시간 0.021초

First Principle을 결합한 최소제곱 Support Vector Machine의 예측 능력 (Prediction Performance of Hybrid Least Square Support Vector Machine with First Principle Knowledge)

  • 김병주;심주용;황창하;김일곤
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제30권7_8호
    • /
    • pp.744-751
    • /
    • 2003
  • 본 논문에서는 최근 뛰어난 예측력으로 각광받는 최소제곱 Support Vector Machine(Least Square Support Vector Machine: LS-SVM)과 First Principle(FP)을 결합한 하이브리드 최소제곱ㆍSupport Vector Machine 모델, HLS-SVM(Hybrid Least Square-Super Vector Machine)을 제안한다. 제안한 모델인 하이브리드 최소제곱 Support Vector Machine을 기존의 방법인 하이브리드 신경망(Hybrid Neural Network:HNN), 비선형 칼만필터와 하이브리드 신경망을 결합한 HNN-EKF (Hybrid Neural Network with Extended Kalman Filter) 모델과 비교해 보았다. HLS-SVM 모델은 학습 및 validation 과정에서는 HNN-EKF와 근사한 성능을 보였고, HNN 보다는 우수한 결과를 보였고, 일반화 성능에서는 HNN-EKF에 비해 3배, HNN보다 100배정도 우수한 결과를 보였다.

커널 Bagging기반의 Import Vector Machine을 이용한 다중 패턴 분류 (Multi-pattern Classification Using Kernel Bagging-based Import Vector Machine)

  • 최준혁;김대수;임기욱
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2002년도 추계학술대회 및 정기총회
    • /
    • pp.275-278
    • /
    • 2002
  • Vapnik이 제안한 Support Vector Machine은 두 개의 부류를 갖는 데이터에 대한 분류에는 매우 좋은 성능을 보인다는 점은 이미 잘 알려져 있다. 하지만 부류의 개수가 3개 이상인 다중 패턴을 갖는 데이터에 대한 분류에는 SVM을 적용하기가 쉽지 않다. Support Vector Machine의 이러한 문제점을 해결하기 위하여 Zhu는 3개 이상의 부류를 갖는 데이터의 패턴 분류를 위하여 Import Vector Machine을 제안하였다. 이 모형은 Support Vector Machine을 이용하여 해결하기 어려운 다중 패턴 분류를 가능케 한다. Import Vector Machine은 커널 로지스틱 기반의 함수만을 사용하지만 본 논문에서는 다수의 커널 함수를 적용하여 가장 성능이 우수한 커널 함수를 찾아내어 최종 분류를 수행하게되는 bagging 기법을 적용하였다 제안하는 방법이 기존의 방법에 비해, 더욱 정확한 분류를 수행함을 실험 결과를 통해 확인한다.

WHEN CAN SUPPORT VECTOR MACHINE ACHIEVE FAST RATES OF CONVERGENCE?

  • Park, Chang-Yi
    • Journal of the Korean Statistical Society
    • /
    • 제36권3호
    • /
    • pp.367-372
    • /
    • 2007
  • Classification as a tool to extract information from data plays an important role in science and engineering. Among various classification methodologies, support vector machine has recently seen significant developments. The central problem this paper addresses is the accuracy of support vector machine. In particular, we are interested in the situations where fast rates of convergence to the Bayes risk can be achieved by support vector machine. Through learning examples, we illustrate that support vector machine may yield fast rates if the space spanned by an adopted kernel is sufficiently large.

Fuzzy Twin Support Vector Machine 개발 및 전리층 레이더 데이터를 통한 성능 평가 (Development of Fuzzy Support Vector Machine and Evaluation of Performance Using Ionosphere Radar Data)

  • 천민규;윤창용;김은태;박민용
    • 한국지능시스템학회논문지
    • /
    • 제18권4호
    • /
    • pp.549-554
    • /
    • 2008
  • Support Vector Machine(SVM)은 통계적 학습 이론에 기반을 둔 분류기이다. 또한 Twin Support Vector Machine(TWSVM)은 이진 SVM 분류기의 한 종류로써, 서로 관련된 두 개의 SVM 유형 문제를 통해 평행하지 않은 두개의 평면을 결정하고 이 두 평면을 통해 분류기를 완성하는 방식이다. 이러한 방식의 TWSVM은 학습 시간이 SVM에 비해 훨씬 짧으며, SVM과 비교하여 떨어지지 않는 성능을 보여준다. 본 논문은 분류기 입력에 Fuzzy Membership을 적용하는 방식의 TWSVM을 제안하고, 전리층 레이더 데이터를 이용한 실험을 통하여 기존에 세시 되었던 분류기와 비교한다.

다중 패턴 분류를 위한 Import Vector Voting 모델 (Import Vector Voting Model for Multi-pattern Classification)

  • 최준혁;김대수;임기욱
    • 한국지능시스템학회논문지
    • /
    • 제13권6호
    • /
    • pp.655-660
    • /
    • 2003
  • 일반적으로 Support Vector Machine은 이진 분류 모형에 있어 우수한 성능을 보이지만 모델의 한계로 인하여 다중 패턴의 분류 문제에는 쉽게 적용하기가 어렵다. 본 논문에서는 이진 분류를 포함한 다중 레이블을 갖는 데이터의 정확한 패턴 분류를 위하여 Zhu가 제안한 Import Vector Machine에 커널 Bagging 전략을 적용하여 분류의 정확성을 향상시키기 위한 Import Vector Voting 모형을 제안한다. 이러한 Import Vector Voting 모형은 다수의 커널함수를 적용한 결과 중에서 가장 성능이 우수한 커널함수를 이용하여 최종 분류를 수행하기 위한 voting 전략으로 사용한다. 본 논문에서 제안하는 Import Vector Voting 모형은 이진 분류를 포함한 3개 이상의 다중 패턴 데이터에 대한 분류 문제에 있어 매우 정확한 분류 성능을 보임을 실험을 통해 입증한다.

입자군집 최적화를 이용한 SVM 기반 다항식 뉴럴 네트워크 분류기 설계 (Design of SVM-Based Polynomial Neural Networks Classifier Using Particle Swarm Optimization)

  • 노석범;오성권
    • 전기학회논문지
    • /
    • 제67권8호
    • /
    • pp.1071-1079
    • /
    • 2018
  • In this study, the design methodology as well as network architecture of Support Vector Machine based Polynomial Neural Network, which is a kind of the dynamically generated neural networks, is introduced. The Support Vector Machine based polynomial neural networks is given as a novel network architecture redesigned with the aid of polynomial neural networks and Support Vector Machine. The generic polynomial neural networks, whose nodes are made of polynomials, are dynamically generated in each layer-wise. The individual nodes of the support vector machine based polynomial neural networks is constructed as a support vector machine, and the nodes as well as layers of the support vector machine based polynomial neural networks are dynamically generated as like the generation process of the generic polynomial neural networks. Support vector machine is well known as a sort of robust pattern classifiers. In addition, in order to enhance the structural flexibility as well as the classification performance of the proposed classifier, multi-objective particle swarm optimization is used. In other words, the optimization algorithm leads to sequentially successive generation of each layer of support vector based polynomial neural networks. The bench mark data sets are used to demonstrate the pattern classification performance of the proposed classifiers through the comparison of the generalization ability of the proposed classifier with some already studied classifiers.

패턴 분류를 위한 Fuzzy Twin Support Vector machine 개발 (Development of Fuzzy Support Vector Machine for Pattern Classification)

  • 천민규;윤창용;김은태;박민용
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국지능시스템학회 2007년도 추계학술대회 학술발표 논문집
    • /
    • pp.279-282
    • /
    • 2007
  • Support Vector Machine(SVM)은 통계적 학습 이론에 기반을 둔 분류기이다. 또한 Twin Support Vector Machine(TWSVM)은 이진 SVM 분류기의 한 종류로써, 서로 관련된 두 개의 SVM 유형 문제를 통해 평행하지 않은 두 개의 평면을 결정하고 이 두 평면을 통해 분류기를 완성하는 방식이다. 이러한 방식은 TWSVM은 학습 시간이 SVM에 비해 훨씬 짧으며, SVM과 비교하여 떨어지지 않는 성능을 보여준다. 본 논문은 분류기 입력에 Fuzzy Memvership을 적용하는 방식의 TWSVM을 제안하고, 2차원 벡터 입력에 대한 실험을 통하여 기존에 제시 되었던 TWSVM과 비교한다.

  • PDF

Power Quality Disturbances Identification Method Based on Novel Hybrid Kernel Function

  • Zhao, Liquan;Gai, Meijiao
    • Journal of Information Processing Systems
    • /
    • 제15권2호
    • /
    • pp.422-432
    • /
    • 2019
  • A hybrid kernel function of support vector machine is proposed to improve the classification performance of power quality disturbances. The kernel function mathematical model of support vector machine directly affects the classification performance. Different types of kernel functions have different generalization ability and learning ability. The single kernel function cannot have better ability both in learning and generalization. To overcome this problem, we propose a hybrid kernel function that is composed of two single kernel functions to improve both the ability in generation and learning. In simulations, we respectively used the single and multiple power quality disturbances to test classification performance of support vector machine algorithm with the proposed hybrid kernel function. Compared with other support vector machine algorithms, the improved support vector machine algorithm has better performance for the classification of power quality signals with single and multiple disturbances.

퍼지 원 클래스 서포트 벡터 머신 (Fuzzy One Class Support Vector Machine)

  • 김기주;최영식
    • 인터넷정보학회논문지
    • /
    • 제6권3호
    • /
    • pp.159-170
    • /
    • 2005
  • OC-SVM(One Class Support Vector Machine)은 주어진 전체 데이터의 분포를 측정하는 대신에. 데이터 분포의 서포트(support)를 측정하는 기술로서 주어진 데이터를 가장 잘 설명할 수 있는 최적의 서포트 벡터(support vector)를 구하는 기술이다. OC-SVM은 데이터 분포의 표현에 아주 뛰어난 접근 방법이지만, 사람의 주관적인 중요도를 반영하는 것은 힘들다. 본 논문에서는 각 데이터에 퍼지 맴버쉽(fuzzy membership)을 적용하여 기존의 OC-SVM에 사용자의 주관적인 중요도를 표현할 수 있는 FOC-SVM(Fuzzy One class Support Vector Machine)을 유도 하였다. FOC-SVM은 데이터들을 동등하게 다루는 것이 아니라, 데이터 객체의 중요도에 따라 데이터를 다룬다. 즉, 덜 중요한 데이터의 특징 벡터는 OC-SVM의 처리과정에 덜 기여하도록 하기 위하여, 객체의 중요도에 따라 특징 벡터의 크기를 조정하였다. 이를 증명하기 위하여 가상의 데이터를 가지고 실험을 하였고, 실험 결과는 예측된 결과를 보여 주었다.

  • PDF

회귀용 Support Vector Machine의 성능개선을 위한 조합형 학습알고리즘 (Hybrid Learning Algorithm for Improving Performance of Regression Support Vector Machine)

  • 조용현;박창환;박용수
    • 정보처리학회논문지B
    • /
    • 제8B권5호
    • /
    • pp.477-484
    • /
    • 2001
  • 본 논문에서는 회귀용 support vector machine의 성능 개선을 위한 모멘텀과 kernel-adatron 기법이 조합형 학습알고리즘을 제안하였다. 제안된 학습알고리즘은 supper vector machine의 학습기법인 기술기상승법에 발생하는 최적해로의 수렴에 따란 발진을 억제하여 그수렴속도를 좀 더 개선시키는 모멘텀의 장점과 비선형 특징공간에서의 동작과 구현의 용이성을 갖는 kernel-adatorn 알고리즘의 장점을 그대로 살린 것이다. 제안된 알고리즘의 support vector machine을 1차원과 2차원 비선형 함수 회귀에 적용하여 시뮬레이션한 결과, 학습속도에 있어서 2차 프로그래밍과 기존의 kernel-adaton 알고리즘보다 더 우수하고, 회귀성능면에서도 우수한 성능이 있음을 확인하였다.

  • PDF