• 제목/요약/키워드: Vector Data

검색결과 3,321건 처리시간 0.027초

High-Capacity and Robust Watermarking Scheme for Small-Scale Vector Data

  • Tong, Deyu;Zhu, Changqing;Ren, Na;Shi, Wenzhong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권12호
    • /
    • pp.6190-6213
    • /
    • 2019
  • For small-scale vector data, restrictions on watermark scheme capacity and robustness limit the use of copyright protection. A watermarking scheme based on robust geometric features and capacity maximization strategy that simultaneously improves capacity and robustness is presented in this paper. The distance ratio and angle of adjacent vertices are chosen as the watermark domain due to their resistance to vertex and geometric attacks. Regarding watermark embedding and extraction, a capacity-improved strategy based on quantization index modulation, which divides more intervals to carry sufficient watermark bits, is proposed. By considering the error tolerance of the vector map and the numerical accuracy, the optimization of the capacity-improved strategy is studied to maximize the embedded watermark bits for each vertex. The experimental results demonstrated that the map distortion caused by watermarks is small and much lower than the map tolerance. Additionally, the proposed scheme can embed a copyright image of 1024 bits into vector data of 150 vertices, which reaches capacity at approximately 14 bits/vertex, and shows prominent robustness against vertex and geometric attacks for small-scale vector data.

Concept Drift Based on CNN Probability Vector in Data Stream Environment

  • Kim, Tae Yeun;Bae, Sang Hyun
    • 통합자연과학논문집
    • /
    • 제13권4호
    • /
    • pp.147-151
    • /
    • 2020
  • In this paper, we propose a method to detect concept drift by applying Convolutional Neural Network (CNN) in a data stream environment. Since the conventional method compares only the final output value of the CNN and detects it as a concept drift if there is a difference, there is a problem in that the actual input value of the data stream reacts sensitively even if there is no significant difference and is incorrectly detected as a concept drift. Therefore, in this paper, in order to reduce such errors, not only the output value of CNN but also the probability vector are used. First, the data entered into the data stream is patterned to learn from the neural network model, and the difference between the output value and probability vector of the current data and the historical data of these learned neural network models is compared to detect the concept drift. The proposed method confirmed that only CNN output values could be used to reduce detection errors compared to how concept drift were detected.

Modifying linearly non-separable support vector machine binary classifier to account for the centroid mean vector

  • Mubarak Al-Shukeili;Ronald Wesonga
    • Communications for Statistical Applications and Methods
    • /
    • 제30권3호
    • /
    • pp.245-258
    • /
    • 2023
  • This study proposes a modification to the objective function of the support vector machine for the linearly non-separable case of a binary classifier yi ∈ {-1, 1}. The modification takes into account the position of each data item xi from its corresponding class centroid. The resulting optimization function involves the centroid mean vector, and the spread of data besides the support vectors, which should be minimized by the choice of hyper-plane β. Theoretical assumptions have been tested to derive an optimal separable hyperplane that yields the minimal misclassification rate. The proposed method has been evaluated using simulation studies and real-life COVID-19 patient outcome hospitalization data. Results show that the proposed method performs better than the classical linear SVM classifier as the sample size increases and is preferred in the presence of correlations among predictors as well as among extreme values.

Analysis of Multivariate Financial Time Series Using Cointegration : Case Study

  • Choi, M.S.;Park, J.A.;Hwang, S.Y.
    • Journal of the Korean Data and Information Science Society
    • /
    • 제18권1호
    • /
    • pp.73-80
    • /
    • 2007
  • Cointegration(together with VARMA(vector ARMA)) has been proven to be useful for analyzing multivariate non-stationary data in the field of financial time series. It provides a linear combination (which turns out to be stationary series) of non-stationary component series. This linear combination equation is referred to as long term equilibrium between the component series. We consider two sets of Korean bivariate financial time series and then illustrate cointegration analysis. Specifically estimated VAR(vector AR) and VECM(vector error correction model) are obtained and CV(cointegrating vector) is found for each data sets.

  • PDF

A transductive least squares support vector machine with the difference convex algorithm

  • Shim, Jooyong;Seok, Kyungha
    • Journal of the Korean Data and Information Science Society
    • /
    • 제25권2호
    • /
    • pp.455-464
    • /
    • 2014
  • Unlabeled examples are easier and less expensive to obtain than labeled examples. Semisupervised approaches are used to utilize such examples in an eort to boost the predictive performance. This paper proposes a novel semisupervised classication method named transductive least squares support vector machine (TLS-SVM), which is based on the least squares support vector machine. The proposed method utilizes the dierence convex algorithm to derive nonconvex minimization solutions for the TLS-SVM. A generalized cross validation method is also developed to choose the hyperparameters that aect the performance of the TLS-SVM. The experimental results conrm the successful performance of the proposed TLS-SVM.

SUPPORT VECTOR MACHINE USING K-MEANS CLUSTERING

  • Lee, S.J.;Park, C.;Jhun, M.;Koo, J.Y.
    • Journal of the Korean Statistical Society
    • /
    • 제36권1호
    • /
    • pp.175-182
    • /
    • 2007
  • The support vector machine has been successful in many applications because of its flexibility and high accuracy. However, when a training data set is large or imbalanced, the support vector machine may suffer from significant computational problem or loss of accuracy in predicting minority classes. We propose a modified version of the support vector machine using the K-means clustering that exploits the information in class labels during the clustering process. For large data sets, our method can save the computation time by reducing the number of data points without significant loss of accuracy. Moreover, our method can deal with imbalanced data sets effectively by alleviating the influence of dominant class.

Quadratic Loss Support Vector Interval Regression Machine for Crisp Input-Output Data

  • Hwang, Chang-Ha
    • Journal of the Korean Data and Information Science Society
    • /
    • 제15권2호
    • /
    • pp.449-455
    • /
    • 2004
  • Support vector machine (SVM) has been very successful in pattern recognition and function estimation problems for crisp data. This paper proposes a new method to evaluate interval regression models for crisp input-output data. The proposed method is based on quadratic loss SVM, which implements quadratic programming approach giving more diverse spread coefficients than a linear programming one. The proposed algorithm here is model-free method in the sense that we do not have to assume the underlying model function. Experimental result is then presented which indicate the performance of this algorithm.

  • PDF

Support vector quantile regression for longitudinal data

  • Hwang, Chang-Ha
    • Journal of the Korean Data and Information Science Society
    • /
    • 제21권2호
    • /
    • pp.309-316
    • /
    • 2010
  • Support vector quantile regression (SVQR) is capable of providing more complete description of the linear and nonlinear relationships among response and input variables. In this paper we propose a weighted SVQR for the longitudinal data. Furthermore, we introduce the generalized approximate cross validation function to select the hyperparameters which affect the performance of SVQR. Experimental results are the presented, which illustrate the performance of the proposed SVQR.

Investigation on the Effect of Multi-Vector Document Embedding for Interdisciplinary Knowledge Representation

  • 박종인;김남규
    • 지식경영연구
    • /
    • 제21권1호
    • /
    • pp.99-116
    • /
    • 2020
  • Text is the most widely used means of exchanging or expressing knowledge and information in the real world. Recently, researches on structuring unstructured text data for text analysis have been actively performed. One of the most representative document embedding method (i.e. doc2Vec) generates a single vector for each document using the whole corpus included in the document. This causes a limitation that the document vector is affected by not only core words but also other miscellaneous words. Additionally, the traditional document embedding algorithms map each document into only one vector. Therefore, it is not easy to represent a complex document with interdisciplinary subjects into a single vector properly by the traditional approach. In this paper, we introduce a multi-vector document embedding method to overcome these limitations of the traditional document embedding methods. After introducing the previous study on multi-vector document embedding, we visually analyze the effects of the multi-vector document embedding method. Firstly, the new method vectorizes the document using only predefined keywords instead of the entire words. Secondly, the new method decomposes various subjects included in the document and generates multiple vectors for each document. The experiments for about three thousands of academic papers revealed that the single vector-based traditional approach cannot properly map complex documents because of interference among subjects in each vector. With the multi-vector based method, we ascertained that the information and knowledge in complex documents can be represented more accurately by eliminating the interference among subjects.

Estimation of Sea Surface Wind Speed and Direction From RADARSAT Data

  • Kim, Duk-Jin;Wooil-M. Moon
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 1999년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.485-490
    • /
    • 1999
  • Wind vector information over the ocean is currently obtained using multiple beam scatterometer data. The scatterometers on ERS-1/2 generate wind vector information with a spatial resolution of 50km and accuracies of $\pm$2m/s in wind speed and $\pm$20$^{\circ}$ in wind direction. Synthetic aperture radar (SAR) data over the ocean have the potential of providing wind vector information independent of weather conditions with finer resolution. Finer resolution wind vector information can often be useful particularly in coastal regions where the scatterometer wind information is often corrupted because of the lower resolution system characteristics which is often contaminated by the signal returns from the coastal areas or ice in the case of arctic environments. In this paper we tested CMOD_4 and CMOD_IFR2 algorithms for extracting the wind vector from SAR data. These algorithms require precise estimation of normalized radar cross-section and wind direction from the SAR data and the local incidence angle. The CMOD series algorithms were developed for the C-band, VV-Polarized SAR data, typically for the ERS SAR data. Since RADARSAT operates at the same C-band but with HH-Polarization, the CMOD series algorithms should not be used directly. As a preliminary approach of resolving with this problem, we applied the polarization ratio between the HH and VV polarizations in the wind vectors estimation. Two test areas, one in front of Inchon and several sites around Jeju island were selected and investigated for wind vector estimation. The new results were compared with the wind vectors obtained from CMOD algorithms. The wind vector results agree well with the observed wind speed data. However the estimation of wind direction agree with the observed wind direction only when the wind speed is greater than approximately 3.0m/s.

  • PDF