• 제목/요약/키워드: Vector Control

검색결과 2,901건 처리시간 0.029초

퍼지 알고리즘을 이용한 유도전동기 간접벡터제어기의 설계와 엘리베이터 속도제어 시스템의 응용 (Design of Indirect Vector Controller of Induction Motor using Fuzzy Algorithm and apply to the Speed Control System of Elevator)

  • 경제문;김훈모
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.110-113
    • /
    • 2000
  • In general, speed control method of the elevator system has used motor pole change type or motor primary voltage control type. But it will change to vector control type in order to increase it's reliability, riding comfort and decrease material cost. It is the conception of vector control type in order to increase it's reliability, riding comfort and decrease material cost. It is the conception of vector control that primary current of the induction motor be controlled independently with magnetizing current(field current of DC motor) and torque current(armature current of DC motor). In this paper, by analyzing the effect of the time constant variation of rotor of the induction motor on the slip frequency type indirect vector control, a drive system for the motor will be constructed using a fuzzy slip frequency type indirect vector controller with fuzzy control method for estimating the vector time constant in the slip frequency type indirect vector control. The goal of this study is to enabling even more efficient speed control by constructing on elevator driver based on the newly developed drive system.

  • PDF

Direct Stator Flux Vector Control Strategy for IPMSM using a Full-order State Observer

  • Yuan, Qingwei;Zeng, Zhiyong;Zhao, Rongxiang
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권1호
    • /
    • pp.236-248
    • /
    • 2017
  • A direct stator flux vector control scheme in discrete-time domain is proposed in this paper for the interior permanent magnet synchronous motor (IPMSM) drive to remove the proportional-integral (PI) controller from the direct torque control (DTC) scheme applied to IPMSM and to obtain faster dynamic response and lower torque ripple output. The output of speed outer loop is used as the desired torque angle instead of the desired torque in the proposed scheme. The desired stator flux vector in dq coordinate is calculated with a given amplitude. The state-space equations in discrete-time for IPMSM are established, the actual stator flux vector is estimated in deadbeat manner by a full-order state observer, and then the closed-loop control is achieved by the pole placement. The stator flux error vector is utilized to calculate the reference stator voltage vector. Extracting the angle position and amplitude from the estimated stator flux vector and estimating the output torque are eliminated for the direct feedback control of the stator flux vector. The proposed scheme is comparatively investigated with a PI-SVM DTC scheme by experiment results. Experimental results show the feasibility and advantages of the proposed control scheme.

적응 자속 관측기를 이용한 유도전동기의 효율 최적화 제어 (Efficiency Optimization Control of Induction Motor using Adaptive Flux Observer)

  • 정동화;박기태;이홍균
    • 한국안전학회지
    • /
    • 제16권4호
    • /
    • pp.88-95
    • /
    • 2001
  • Stator core loss has significant adverse effects when an induction motor is controlled by the conventional vector control method. Therefore, taking core toss into account should make it possible to control the torque very precisely. This paper proposes a speed sensorless vector control method for an induction motor at optimum efficiency and high response taking core loss account. The proposed vector control system consists of a speed adaptive rotor flux observer which takes core loss into account and employs a direct vector control which compensates for the influence of core loss. Also, in this paper, a vector controlled induction motor with a deadbeat rotor flux controller is developed. The method ensures optimum efficiency in the steady state without degradation of the dynamic response. The validity of the proposed technique is confirmed by simulation results for induction motor drive system.

  • PDF

Speed Sensorless Vector Control for AC servo Motor Using Flux observer

  • Hong, Jeng-pyo;Kwon, Soon-Jae;Hong, Soon-Ill
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권2호
    • /
    • pp.185-191
    • /
    • 2004
  • This study describes the scheme of vector drive system without speed sensor for AC servo motor using theory of a flux observer and based on the field oriented vector control. The new method of speed estimation is presented from operate with the position and magnitude of the secondary flux which obtain from the voltage reference and detected current. As the estimated speed is settled by the flux and the machine-specific parameters. this method don't need to adjust the gain of the parameter. Based on the derived theory for vector control. the scheme for sensorless vector drive of AC servo motor is designed and realized. And the experiment verifies it passable to realize the sensorless vector drive based on a field-oriented type.

유도전동기 회전자 저항 보상을 위한 벡터제어 (Vector Control for the Rotor Resistance Compensation of Induction Motor)

  • 박현철;이수원;김영민;황종선
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집
    • /
    • pp.65-68
    • /
    • 2001
  • In the vector control methods of induction motor, the stator current is divided into the flux and torque component current. By controlling these components respectively, the methods control independently flux and torque as in the DC motor and improve the control effects. To apply the vector control methods, the position of the rotor current is identified. The indirect vector control use the parameters of the machine to identify the position of rotor flux. But due to the temperature rise during machine operation, the variation of rotor resistance degrades the vector control. To solve the problem, the q-axis is aligned to reference frame without phase difference by comparing the real flux component with the reference flux component. Then to compensate the slip, PI controller is used. The proposed method keeps a constant slip by compensating the gain of direct slip frequency when the rotor resistance of induction motor varies. To prove the validations of the proposed algorithm in the paper, computer simulations is executed.

  • PDF

다중모터 구동에서의 벡터제어 (A vector control method for multiple induction motors)

  • 변윤섭;김영철
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 학술회의 논문집 정보 및 제어부문 B
    • /
    • pp.649-652
    • /
    • 2003
  • In this paper, we presents a vector control method for the parallel-connected motor drive system. The new estimation scheme of rotor flux position is presented to reduce sensitivity due to load difference between the motors. To confirm the validity of the proposed control method. we compare a simulation result of the proposed control method with that of the conventional indirect vector control method. The simulation results show that the proposed control method is more effective for change in load torque and motor parameters.

  • PDF

Double-Objective Finite Control Set Model-Free Predictive Control with DSVM for PMSM Drives

  • Zhao, Beishi;Li, Hongmei;Mao, Jingkui
    • Journal of Power Electronics
    • /
    • 제19권1호
    • /
    • pp.168-178
    • /
    • 2019
  • Discrete space vector modulation (DSVM) is an effective method to improve the steady-state performance of the finite control set predictive control for permanent magnet synchronous motor drive systems. However, it requires complex computations due to the presence of numerous virtual voltage vectors. This paper proposes an improved finite control set model-free predictive control using DSVM to reduce the computational burden. First, model-free deadbeat current control is used to generate the reference voltage vector. Then, based on the principle that the voltage vector closest to the reference voltage vector minimizes the cost function, the optimal voltage vector is obtained in an effective way which avoids evaluation of the cost function. Additionally, in order to implement double-objective control, a two-level decisional cost function is designed to sequentially reduce the stator currents tracking error and the inverter switching frequency. The effectiveness of the proposed control is validated based on experimental tests.

유도전동기의 강건한 저속 제어를 위한 단위각 보상 벡터 제어 (The Vector Control with Compensating Unit Angle for the Robust Low Speed Control of Induction Motor)

  • 원영진;박진홍
    • 전자공학회논문지T
    • /
    • 제35T권1호
    • /
    • pp.90-98
    • /
    • 1998
  • 본 논문은 유도전동기를 저속에서 강건하게 제어할 수 있도록 개선된 벡터 제어에 관한 연구이다. 유도전동 기가 정격 속도의 10% 이하인 저속에서 구동될 경우 고조파에 의하여 발생하는 단위 벡터각 오차를 보상하는 알고리즘을 제안하였다. 또한 저속 및 과도상태에서 회전자 파라미터 변화에 대하여 강건하게 운전하도록 회전 자 시정수에 동조하는 알고리즘을 제시하였다. 제안한 벡터 제어를 이용하여 자속과 토오크 리플을 감소시킴으로써 저속에서 안정된 출력특성을 얻을 수 있었다. 입출력이 정현적인 상태일 때, 제안한 벡터 제어와 직접 벡터 제어 및 간접 벡터 제어의 저속 특성을 비교 분석하였고, 고조파가 함유된 상태에서 각각의 제어 특성을 비교 분석하였다. 그리고 회전자 시정수의 추종 성능은 시뮬레이션으로 확인하였다. 전체 제어 시스템을 실제의 하드웨어로 구현하고, 제안한 벡터 제어와 직접 벡터 제어를 비교 분석하였다. 두 제어 기법을 저속에서 실험 한 결과, 정상상태에서 직접 벡터를 기준으로 할 경우 토오크 리플이 45% 개선된 특성을 얻었다. 또한 자속 전류 리플은 0.2 p.u. 감소하였고, 토오크 전류 리플은 0.6 p.u. 감소함을 확인하였다. 그리고 회전자 시정수의 변화에 대하여 동조됨을 확인하였다. 따라서 저속에서 제안한 벡터 제어의 타당성과 강건성을 입증하였다.

  • PDF

영구자석형 동기전동기를 위한 고조파 자속을 고려한 공간전압벡터 제어 (Space vector control considering flux harmonics for PMSM)

  • 박익동;이제희;허욱열
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.508-511
    • /
    • 1997
  • Recently the development of motor speed control systems with both good dynamic performance and simple implementation has been required. The vector control scheme considering flux harmonics for the permanent-magnet AC servo motor having low inertia, low weight, and high efficiency is proposed. To reduce the torque harmonics, current harmonics is employed. The vector control strategy is verified through digital simulation.

  • PDF

고정자 자속 기준 3상 유도전동기의 벡터제어 (Vector Control of 3 Phase Induction Motor Using Stator Flux Reference Frame)

  • 김재형
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2000년도 전력전자학술대회 논문집
    • /
    • pp.181-185
    • /
    • 2000
  • To get high efficiency in variable speed control of induction motor it is required that the vector control should be separated from flux components current and torque component current. In this paper the vector control is modeled by the estimation of the stator flex. Representing induction motor speed controller as a digital system with he use of he 32bit DSP improves the motor control performance The IGBT is used as the switching device and the validity of the proposed vector control is proved through voltage current wave and the characteristics of the velocity response as the drive circuit being simplified

  • PDF