Starchenko, Maria;Jangsoon Kim;Namhyuk Ham;Jae-Jun Kim
Korean Journal of Construction Engineering and Management
/
v.25
no.4
/
pp.53-65
/
2024
During COVID-19 the housing market in Korea experienced the soaring prices, despite the decrease in the economic growth rate. This paper aims to analyze macroeconomic determinants affecting housing prices in Korea during the pandemic and find an appropriate statistic model to forecast the changes in housing prices in Korea. First, an appropriate lag for the model using Akaike information criterion was found. After the macroeconomic factors were checked if they possess the unit root, the dependencies in the model were analyzed using vector autoregression (VAR) model. As for the prediction, the VAR model was used and, besides, compared afterwards with the long short-term memory (LSTM) model. CPI, mortgage rate, IIP at lag 1 and federal funds effective rate at lag 1 and 2 were found to be significant for housing prices. In addition, the prediction performance of the LSTM model appeared to be more accurate in comparison with the VAR model. The results of the analysis play an essential role in policymaker perception when making decisions related to managing potential housing risks arose during crises. It is essential to take into considerations macroeconomic factors besides the taxes and housing policy amendments and use an appropriate model for prices forecast.
River and groundwater stages are the main elements in the hydrologic cycle. They are spatially correlated and can be used to evaluate hydrological and agricultural drought. Stochastic simulation is often performed independently on hydrological variables that are spatiotemporally correlated. In this setting, interdependency across mutual variables may not be maintained. This study proposes the Bayesian vector autoregression model (VAR) to capture the interdependency between multiple variables over time. VAR models systematically consider the lagged stages of each variable and the lagged values of the other variables. Further, an autoregressive model (AR) was built and compared with the VAR model. It was confirmed that the VAR model was more effective in reproducing observed interdependency (or cross-correlation) between river and ground stages, while the AR generally underestimated that of the observed.
Islam, Md. Zahidul;Ahmed, Zaima;Saifullah, Md. Khaled;Huda, Syed Nayeemul;Al-Islam, Shamil M.
The Journal of Asian Finance, Economics and Business
/
v.4
no.4
/
pp.61-66
/
2017
Environmental awareness and its relation to the development of economy has garnered increased attention in recent years. Researchers, over the years, have argued that sustainable development warrants for minimizing environmental degradation since one depends on the other. This study analyzes the relationship between environmental degradation (carbon emission taken as proxy for degradation), economic growth, total energy consumption and industrial production index growth in Bangladesh from year 1998 to 2013. This study uses Vector Autoregression (VAR) Model and variance decomposition of VAR to analyze the effect of these variables on carbon emission and vice-versa. The findings of VAR model suggest that industrial production and GDP per capita has significant relationship with carbon emission. Further analysis through variance decomposition shows carbon emission has consistent impact on industrial production over time, whereas, industrial production has high impact on emission in the short run which fades in the long run which is consistent with Environmental Kuznets Curve (EKC) hypothesis. Carbon emission rising along with GDP per capita and at the same time having low impact in the long run on industrial index indicates there may be other sources of pollution introduced with the rise in income of the economy over time.
The Journal of Asian Finance, Economics and Business
/
v.7
no.10
/
pp.543-553
/
2020
This paper examines the effect of COVID-19 pandemic on the Philippine stock exchange, peso-dollar rate and retail price of diesel using robust least squares regression and vector autoregression (VAR). The robust least squares regression using MM-estimation method concluded that COVID-19 daily infection has negative and statistically significant effect on the Philippine stock exchange index, peso-dollar exchange rate and retail pump price of diesel. This is consistent with the results of correlation diagnostics. As for the VAR model, the lag values of the independent variable disclose significance in explaining the Philippine stock exchange index, peso-dollar exchange rate and retail pump price of diesel. Moreover, in the short run, the impulse response function confirmed relative effect of COVID-19 daily infections and the variance decomposition divulge that COVID-19 daily infections have accounted for only minor portion in explaining fluctuations of the Philippine stock exchange index, peso-dollar exchange and retail pump price of diesel. In the long term, the influence levels off. The Granger causality test suggests that COVID-19 daily infections cause changes in the Philippine stock exchange index and peso-dollar exchange rate in the short run. However, COVID-19 infection has no causal link with retail pump price of diesel.
Journal of the Korea Academia-Industrial cooperation Society
/
v.17
no.7
/
pp.63-76
/
2016
Most previous studies found a positive relationship between the value of a firm and its R&D investments. This research measures the impact of the timescale of the R&D investment of a firm on its value using panel vector autoregression. By measuring the time required for R&D to impact the value of a firm, this study demonstrates that the lead time is an essential factor in the analysis of the effect of R&D investment on a firm's value. Our study finds that the length of the lead time varies according to the firm's size, industry concentration, and book to market ratio. Firms with a higher industry concentration show a shorter lead time. Also, firms with a larger size and higher book to market ratio generally show a shorter lead time.
This paper examines the interactions between financial conditions and business cycles in Mongolia, a small open economy, heavily depending on commodity exports. We construct two financial conditions indexes based on the reduced form IS model and the vector autoregression (VAR) model as surveillance tools to quantify the degree of the financial conditions. We find that real short-term interest rate and real effective exchange rate gap get a higher weight in the FCIs. Both business and financial cycles are often more pronounced in Mongolia, and financial condition is dependent of the financial and monetary policies in place. The analysis of the predictive power of the FCIs for business cycles shows that they have predictive information for the near-term economic activities. FCIs are also helpful in signaling inflation turning points.
The Journal of Asian Finance, Economics and Business
/
v.8
no.3
/
pp.111-118
/
2021
The purpose of this paper is to study the impact of trade openness on foreign direct investment (FDI) inflows into Vietnam, an emerging country with relatively high trade openness in recent years. The study used the vector autoregression (VAR) model to examine the impact of trade openness on FDI in Vietnam, in the period from 2005 to 2019. The research data are time-series data, with quarterly frequency, from 2005:Q4 to 2019:Q3. The FDI data were collected by International Financial Statistics. The data of trade openness were calculated based on Vietnam's export, import, and GDP data collected by the General Statistics Office of Vietnam. The estimated result shows that the trade openness has a positive effect on FDI. The current FDI is heavily influenced by FDI in the past with an average explanation of 74%. The main findings indicate that trade openness has a positive effect on FDI inflows into Vietnam. The findings also show that FDI in Vietnam is significantly affected by the shocks of the FDI itself in the past. The findings of the study suggest the Vietnamese Government improves the quality of trade openness and FDI, continues and maintains economic relations with other countries to increase trade openness.
This study aims to identify the causal relationship among public technology transfer, technological performance, and research and development (R&D) productivity. Using the impulse-response function(IRF) of a panel vector autoregressive model (panel VAR), this study suggests the results of how long the factors such as technological performance (patent), public technology transfer, and R&D productivity takes and lasts if a one-unit shock of standard deviation occurs. As a result, first, the increase of public technology transfer activities has no power to increase the technology performance but improve the R&D productivity. If the public institute increases its technology transfer activities by one unit, the R&D productivity will increase within five years. Second, the impact of increasing technological performance on improvement of public technology transfer and R&D productivity is an insignificant. Third, the effect of R&D productivity on the public technology transfer creates a substantial reaction after a current time. Considering the structural relationships among public technology transfer, technological performance, and R&D productivity, if policy makers intend to construct the active R&D circumstance, technology suppliers should be motivated to run the active R&D mechanism because they achieve gains.
SUJIANTO, Agus Eko;PANTAS, Pribawa E.;MASHUDI, Mashudi;PAMBUDI, Dwi Santosa;NARMADITYA, Bagus Shandy
The Journal of Asian Finance, Economics and Business
/
v.7
no.11
/
pp.127-135
/
2020
This study aims to measure the effects of real interest rate (RIR), gross domestic savings (GDS), and net exports (EN) shocks on Indonesia's economic growth (EG). The focus on Indonesia is unique due to the abundant resources available in the nation, but they are unsuccessful in boosting economic growth. This study applied a quantitative method to comprehensively analyze the correlation between variables by employing Vector Autoregression Model (VAR) combined with Vector Error Correction Model (VECM). Various procedures are preformed: Augmented Dickey-Fuller test (ADF), Optimum Lag Test, Johansen Cointegration Test, Granger Causality Test, as well as Impulse Response Function (IRF) and Error Variance Decomposition Analysis (FEVD). The data were collected from the World Bank and the Asian Development Bank from 1986 to 2017. The findings of the study indicated that economic growth responded positively to real interest rate shocks, which implies that when the real interest rate experiences a shock (increase), the economy will be inclined to growth. While, economic growth responded negatively to gross domestic savings and net export shocks. Policymakers are expected to consider several matters, particularly the economic conditions at the time of formulating policy, so that the prediction effectiveness of a policy can be appropriately assessed.
From the success of TDX and CDMA to today's social media boom, Korea's ICT has achieved an amazing growth for the last couple of decades. However, in spite of ICT's role as an engine of growth in Korea, there have been concerns that ICT growth would negatively affect national employment due to the labor substitution effect. While some scholars insist that ICT would positively affect employment because it will enlarge the size of industry itself, many people blame ICT as a main culprit of rising unemployment rates. In this study, we try to empirically find the true effect of ICT growth on employment in Korea. We use the data of ICT productions, ICT investments, and various industries employments from 1995 to 2011. The methodologies we adopted for this study is Granger causality tests and impulse response functions based on vector autoregression (VAR) model. We find that ICT has negative impact on service industries, while it has positive impact on manufacturing industries. Meanwhile, ICT has no statistically significant impact on ICT industry itself. Since the impacts of ICT on employment are mixed, we can argue that ICT should not be blamed for the main cause of low employment. We suggest a direction of future policies to utilize ICT for vitalizing employments in Korea.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.