• 제목/요약/키워드: Vector Algorithm

검색결과 3,111건 처리시간 0.029초

적응 휴리스틱 분할 알고리즘을 이용한 실시간 차량 번호판 인식 시스템 (Real-Time Vehicle License Plate Recognition System Using Adaptive Heuristic Segmentation Algorithm)

  • 진문용;박종빈;이동석;박동선
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제3권9호
    • /
    • pp.361-368
    • /
    • 2014
  • 차량 번호판 인식 시스템은 복잡한 교통환경의 효율적 관리를 위해 발전되어 현재 많은 곳에 사용되고 있다. 그러나 조명, 잡음, 배경변화, 번호판 훼손 등 환경변화에 큰 영향을 받기 때문에 제한된 환경에서만 동작하며, 실시간으로 사용하기 어렵다. 본 논문에서는 조명변화와 잡음에 강건하며 빠른 번호판 인식을 위한 휴리스틱 분할 알고리즘 및 이를 이용한 실시간 번호판 인식 시스템을 제안한다. 첫 번째 단계는 Haar-like 특징과 Adaboost를 이용하여 번호판을 검출한다. 이 방법은 적분영상을 이용하며 케스케이드 구조로 구성되어 있어 빠른 검출이 가능하다. 두 번째 단계에서 적응 히스토그램 평활화 방법과 노이즈를 경감시키는 바이레터럴 필터를 이용하여 번호판의 종류를 결정한 후, 번호판 종류에 따라 적분영상을 이용한 적응 이진화, 픽셀 프로젝션, 사전지식 등을 기반으로 빠르고 정확한 문자 분할을 한다. 세번째 단계에서는 HOG와 신경망 알고리즘을 이용하여 숫자를 인식하고, SVM을 이용해 한글을 인식한다. 실험결과는 번호판검출에 94.29%의 검출률, 2.94%의 오경보율을 보이며, 문자분할에서는 검출률 97.23%, 2.94%의 오경보율을 보였다. 문자인식에서 평균 인식률은 98.38%이다. 평균 운용시간은 140ms으로 빠르고 강인한 실시간 시스템을 만들 수 있다.

옥외 소음의 전파: 음 추적 알고리즘 (Outdoor Noise Propagation: Geometry Based Algorithm)

  • 박지헌;김정태
    • 한국음향학회지
    • /
    • 제21권4호
    • /
    • pp.339-438
    • /
    • 2002
  • 본 논문은 3차원으로 표현된 가상의 옥외 공간에서 소음이 전파되는 방법을 컴퓨터로 시뮬레이션하기 위한 방법을 제시한다. 소음은 음원에서 발생하여 수음자로 직접전파 혹은 많은 반사를 거쳐서 간접적으로 전파되기도 한다. 결과적으로 수음자에 들리는 소음은 음원과 수음자 사이의 최단 거리, 반사 거리, 반사횟수 등에 따라 영향을 받으며, 반사시키는 물체의 특성 및 주파수에 따라서 전달되는 양의 차이가 있을 수 있다. 본 논문에서는 음원에서 수음자에 전달되는 소리를 추적함에 있어서 정방향 추적 (forward tracing)을 사용하는 방법에 대한 문제점들을 제시하고, 다른 접근방법인 기하학적 계산에 의한 시뮬레이션 방법을 제시한다. 즉 소리 추적벡터 (tracing vector)를 정의함에 있어서 음원에서 발생하는 소리벡터를 추적하는 정방향 추적 및 음원과 수음자간 발생 가능한 전파 경로를 기하학적으로 계산하는 기하학적 추적 방법에 의한 시뮬레이션 방법을 제시한다. 기하학적 계산 방법은 정방향 추적을 사용하는 경우와 비교할 때 불필요하게 버려지는 추적 벡터의 수를 현저히 줄일 수 있으므로 효과적 이라고 할 수 있다. 실험결과는 가상현실 모델링 언어 (VRML: Virtual Reality Modeling Language)로 가시화해서 보다 명확하게 알아볼 수 있다. 본 방법은 3차원 가상현실 (virtual reality)이나 멀티미디어 (multimedia), 또는 실내, 실외 등의 소음측정 시뮬레이션에도 적용이 가능하므로 확장성이 좋다고 할 수 있다.

3차원 모델을 이용한 입모양 인식 알고리즘에 관한 연구 (A study on the lip shape recognition algorithm using 3-D Model)

  • 배철수
    • 한국정보통신학회논문지
    • /
    • 제3권1호
    • /
    • pp.59-68
    • /
    • 1999
  • 최근 통신 시스템의 연구와 발전 방향은 목소리의 음성 정보와 말하는 얼굴 영상의 화상 정보를 함께 적용하므로서 음성 정보만을 제공하는 경우보다 높은 인식율을 제공한다. 따라서 본 연구는 청각장애자들의 언어 대체수단 중 하나인 구화(speechreading)에서 가장 시각적 변별력이 높은 입모양 인식을 일반 퍼스널 컴퓨터상에서 구현하고자 한다. 본 논문은 기존의 방법과 달리 말하는 영상 시퀀스에서 입모양 인식을 행하기 위해 3차원 모델을 사용하여 입의 벌어진 정도, 턱의 움직임, 입술의 돌출과 같은 3차원 특징 정보를 제공하였다. 이와 같은 특징 정보를 얻기 위해 3차원 형상 모델을 입력 동영상에 정합시키고 정합된 3차원 형상 모델에서 각 특징점의 변화량을 인식파라미터로 사용하였다. 그리고, 인식단위로 동영상을 분리하는 방법은 3차원 특징점 변화량에서 얻어지는 강도의 기울기에 의하여 이루어지고, 인식은 각각의 3차원 특징벡터를 이산 HMM 인식기의 인식 파라메타로 사용하였다. 본 논문에서는 한국어 10개 모음에 대하여 인식실험하여 비교적 높은 인식율을 얻을 수 있는 것으로 보아 본 연구에서 사용한 특징 벡터를 시간적 변별 요소로서 사용할 수 있음을 제시하였다.

  • PDF

선호도 재계산을 위한 연관 사용자 군집 분석과 Representative Attribute -Neighborhood를 이용한 협력적 필터링 시스템의 성능향상 (Performance Improvement of Collaborative Filtering System Using Associative User′s Clustering Analysis for the Recalculation of Preference and Representative Attribute-Neighborhood)

  • 정경용;김진수;김태용;이정현
    • 정보처리학회논문지B
    • /
    • 제10B권3호
    • /
    • pp.287-296
    • /
    • 2003
  • 추천 시스템에 있어서 협력적 필터링 기술은 많은 연구가 되고 있다. 그러나 협력적 필터링 기술을 이용한 추천 시스템은 초기 평가 문제와 희박성 문제가 발생한다. 이를 해결하기 위해서 본 논문에서는 선호도 재 계산을 위한 연관 사용자 군집과 베이지안 추정치를 이용한 사용자 선호도 예측 방법을 제안한다. 제안한 방법에서는 협력적 필터링 시스템에서 아이템의 속성을 고려하지 않는 단점을 보완하기 위해서 선호도에 가장 크게 영향을 미치는 대표 장르를 추출하여 유사한 이웃을 찾아 낼 때 예측에 이용하는 Representative Attribute-Neighborhood 방법을 사용한다. 협력적 필터링의 알고리즘에 군집 아이템 백터 내의 특정 아이템의 선호도를 재계산 하기 위한 연관 사용자 군집 분석을 적용하여 성능 향상을 하였다. 또 초기 평가 문제와 희박성 문제를 해결하기 위하여 Association Rule Hypergraph Partitioning 알고리즘을 사용하여 사용자를 장르별로 군집한다. 새로운 사용자는 Naive Bayes 분류자에 의해 이들 장르 중 하나로 분류된다. 또한, 분류된 장르 내에 속한 사용자들과 새로운 사용자의 유사도를 구하기 위해 Naive Bayes 학습을 통해 사용자가 평가한 아이템에 추정치를 달리 부여한다. 추정치가 부여된 선호도를 피어슨 상관 관계에 적용할 경우 결측치(Missing Value)로 인한 예측의 오류를 적게하여 예측의 정확도를 높일 수 있다. 제안된 방법은 기존의 방법보다 높은 성능을 나타냄을 보인다.

거리비례제 요금정책에 따른 K요금경로탐색 (Finding the K Least Fare Routes In the Distance-Based Fare Policy)

  • 이미영;백남철;문병섭;강원의
    • 대한교통학회지
    • /
    • 제23권1호
    • /
    • pp.103-114
    • /
    • 2005
  • 서울시 대중교통체계개편에서 요금부과방안은 기본적으로 거리비례제에 근거하고 있다. 거리비례제에서 요금은 일정거리까지의 통행에 따른 기본요금과 수단적 환승에서 발생하는 환승요금, 일정거리 이상의 통행에 따른 할증요금으로 구분하여 부과된다. 본 연구는 거리비례제에 따른 요금부과 시 순차적으로 정렬된 K개의 요금경로를 탐색하는 K요금경로탐색알고리즘을 제안한다. 이를 위해 다수의 대중교통수단이 존재하는 복합교통망에서 링크표지기법을 적용하여 네트워크확장이 요구되지 않도록 하였으며, 동일링크를 통행하는 복수의 통행순단을 각각의 개별링크로 처리되도록 구축하였다. 따라서 본 연구에서 제안하는 K요금경로탐색알고리즘은 수단과 관련된 별도의 표식이 요구되지 않으므로 단일수단 교통망에 확용되는 K경로탐색알고리즘이 직접 적용될 수 있다. 본 연구는 또한 출발지에서 수단을 탑승한 이용자에게 요금이 부과되는 과정을 복합교통망에서 나타내가 위하여 출발지를 기준으로 탐색되는 인접된 두 링크에 대해서 기본요금, 환승요금, 할증요금이 계산되어 합산되는 과정을 수식으로 표현하였다. 이 수식을 K개의 원소를 포함하는 재귀벡터형태(Recursive Vector Formula)로 전화하여 K요금경로탐색을 위한 최적식과 알고리즘을 제안하였다. 간단한 사례연구를 통하여 알고리즘 수행과정을 검증하고 향후에 연구진행방향에 대하여 서술하였다.

스마트폰에서 웃음 치료를 위한 표정인식 애플리케이션 개발 (Development of Recognition Application of Facial Expression for Laughter Theraphy on Smartphone)

  • 강선경;이옥걸;송원창;김영운;정성태
    • 한국멀티미디어학회논문지
    • /
    • 제14권4호
    • /
    • pp.494-503
    • /
    • 2011
  • 본 논문에서는 스마트폰에서 웃음 치료를 위한 표정인식 애플리케이션을 제안한다. 제안된 방법에서는 스마트폰의 전면 카메라 영상으로부터 AdaBoost 얼굴 검출 알고리즘을 이용하여 얼굴을 검출한다. 얼굴을 검출한 다음에는 얼굴 영상으로부터 입술 영역을 검출한다. 그 다음 프레임부터는 얼굴을 검출하지 않고 이전 프레임에서 검출된 입술영역을 3단계 블록 매칭 기법을 이용하여 추적한다. 카메라와 얼굴 사이의 거리에 따라 입술 영역의 크기가 달라지므로, 입술 영역을 구한 다음에는 고정된 크기로 정규화한다. 그리고 주변 조명 상태에 따라 영상이 달라지므로, 본 논문에서는 히스토그램 매칭과 좌우대칭을 결합하는 조명 정규화 알고리즘을 이용하여 조명 보정 전처리를 함으로써 조명에 의한 영향을 줄일 수 있도록 하였다. 그 다음에는 검출된 입술 영상에 주성분 분석을 적용하여 특징 벡터를 추출하고 다층퍼셉트론 인공신경망을 이용하여 실시간으로 웃음 표정을 인식한다. 스마트폰을 이용하여 실험한 결과, 제안된 방법은 초당 16.7프레임을 처리할 수 있어서 실시간으로 동작 가능하였고 인식률 실험에서도 기존의 조명 정규화 방법보다 개선된 성능을 보였다.

GLCM/GLDV 기반 Texture 알고리즘 구현과 고 해상도 영상분석 적용 (Implementation of GLCM/GLDV-based Texture Algorithm and Its Application to High Resolution Imagery Analysis)

  • 이기원;전소희;권병두
    • 대한원격탐사학회지
    • /
    • 제21권2호
    • /
    • pp.121-133
    • /
    • 2005
  • 화소들 사이의 관계를 고려해 Texture 영상을 생성해 내는 것을 의미하는 Texture 영상화는 유용한 영상 분석 방법 중의 하나로 잘 알려져 있고, 대부분의 상업적인 원격 탐사 소프트웨어들은 GLCM이라는 Texture 분석 기능을 제공하고 있다. 본 연구에서는, GLCM 알고리즘에 기반한 Texture 영상화 프로그램이 구현되었고, 추가적으로 GLDV에 기반을 둔 Texture 영상화 모듈 프로그램을 제공한다. 본 프로그램에서는 Homogeneity, Dissimilarity, Energy, Entropy, Angular Second Moment(ASM), Contrast 등과 같은 GLCN/GLDV의 6가지 Texture 변수에 따라 각각 이에 해당하는 Texture 영상들을 생성해 낸다. GLCM/GLDV Texture 영상 생성에서는 방향 의존성을 고려해야 하는데, 이 프로그램에서는 기본적으로 동-서, 북동-남서, 북-남, 북서-남동 등의 기본적인 방향설정을 제공한다. 또한 이 논문에서 새롭게 구현된 커널내의 모든 방향을 고려해서 평균값을 계산하는 Omni 방향 모드와 커널내의 중심 화소를 정하고_그 주변 화소에 대한 원형 방향을 고려하는 원형방향 모드를 지원한다. 또한 본 연구에서는 여러 가지 변수와 모드에 따라 얻어진 Texture 영상의 분석을 위하여 가상 영상 및 실제 위성 영상들에 의하여 생성된 Texture 영상간의 특징 분석과 상호상관 분석을 수행하였다. Texture 영상합성 응용시에는 영상의 생성시에 적용된 변수들에 대한 이해와 영상간의 상관도를 분석하는 과정이 필요할 것으로 생각된다.

히스토그램의 최적 높이의 폭에 기반한 3차원 필름 영상 검사 (3D Film Image Inspection Based on the Width of Optimized Height of Histogram)

  • 이재은;김종남
    • 융합신호처리학회논문지
    • /
    • 제23권2호
    • /
    • pp.107-114
    • /
    • 2022
  • 3차원 필름 영상을 양품 또는 불량품으로 분류하기 위해서는 필름의 영상 내 무늬를 검출해야 한다. 하지만 만약 필름 내 화소의 명암이 낮다면 영상 내 무늬가 선명하지 않아서 분류하기가 쉽지 않다. 본 논문에서는 3D 필름 영상들의 히스토그램을 구한 후, 각 히스토그램의 특정 빈도에서의 폭을 비교하여 정품과 불량품으로 분류하는 방법을 제안한다. 실험을 통하여 정품과 불량품의 히스토그램이 뚜렷하게 다르다는 것을 보였으며, 이러한 특징을 반영한 제안 알고리즘을 이용하여 히스토그램의 특정 빈도에서 모든 3D 필름 영상들이 정확하게 분류되는 것을 보였다. 기존에 연구된 방법들인 차영상, 오츠의 이진화 알고리즘, 캐니 엣지, 모폴로지 지오데식 엑티브 컨투어, 그리고 서포트 벡터 머신과의 성능 비교를 통하여 제안한 알고리즘의 성능이 가장 우수함을 검증하였으며, 영상 내 무늬를 검출할 필요 없이도 우수한 분류 정확도를 얻을 수 있다는 것을 보였다.

가속도 센서기반의 인체활동 및 낙상 분류를 위한 알고리즘 구현 (Implementation of Acceleration Sensor-based Human activity and Fall Classification Algorithm)

  • 박현;박준모;하연철
    • 융합신호처리학회논문지
    • /
    • 제23권2호
    • /
    • pp.76-83
    • /
    • 2022
  • 최근 IT기술이 발달함에 따라 다양한 생체신호 측정 기기에 대한 연구 및 관심이 높아지고 있는 이유 중 하나로 고령사회가 본격화됨에 따라 IT 관련 기술을 이용한 고령 인구에 대한 연구가 지속해서 발전되고 있다. 본 논문은 초고령사회에 접어들면서 빠르게 발전하고 있는 노인층을 대상으로 한 의료서비스 영역 중 하나인 생활 패턴 감지와 낙상 감지 알고리즘 개발에 관한 것이다. 3축 가속도 센서와 심전도 센서를 이용한 시스템을 구성하여 데이터를 수집한 뒤 데이터를 분석하는 과정으로 진행하였고 실제 연구 결과로부터 행동 패턴의 분류가 가능함을 제안한다. 본 논문에 의해 구현된 인체 활동 모니터링 시스템의 유용성을 평가하기 위하여 자세 변화, 보행속도의 변화 등 다양한 조건에서 실험을 수행하여 인체의 중력 가속도와 인체 활동 정도를 반영하는 신호크기 범위 및 신호 벡터크기 파라미터를 추출하였다. 그리고 이들 파라미터값에 의해 피검자의 상태에 따라 판별이 가능하였다.

지형공간정보 및 최적탐색기법을 이용한 최적침투경로 분석 (Analysis of Infiltration Route using Optimal Path Finding Methods and Geospatial Information)

  • 방수남;허준;손홍규;이용웅
    • 대한토목학회논문집
    • /
    • 제26권1D호
    • /
    • pp.195-202
    • /
    • 2006
  • 침투경로분석은 지형공간정보 기술을 활용한 군사응용분야 중 하나이다. 분석결과는 잠재적인 적의 침투에 대해 취약한 경로를 보여줄 것이다. 가능한 침투경로를 찾기 위하여 탐지확률의 합으로 표현되는 비용함수를 최소화하는 최적경로알고리듬(다익스트라 및 $A^*$)을 사용하였다. 열상장비의 성능, 수치고도모형을 이용한 가시선분석 결과와 지형분석도(VITD)에 포함된 지형공간정보 커버리지(coverage) 중 2개의 관련된 커버리지를 사용하여 비용함수를 계산하였다. $50m{\times}50m$ 셀(cell) 크기 단위로 각각의 비용이 계산되고 저장되었으며, 최적경로로서 경로상의 모든 비용의 합을 최소화하는 경로를 찾아내었다. 제안된 방법은 대한민국의 대전지역을 대상으로 실험하였다. 실험 결과 다익스트라와 $A^*$ 알고리듬은 큰 차이가 없었으며, 다만 $A^*$ 알고리듬의 수행시간 측면에서 유리하였다. 이러한 응용분야는 침투와 감시의 두 가지 측면에서 모두 활용될 수 있다. 열상장비의 위치를 바꿔서 시뮬레이션을 수행하면, 가장 취약한 경로를 침투목적으로 찾아낼 수 있다. 다른 측면으로 보면 열상장비의 최상의 위치를 선택하기 위하여 사용될 수 있다. 이는 군사응용분야에 대한 강력한 지형공간정보 활용 해법의 한 가지 예제가 될 것이다.