• Title/Summary/Keyword: Vascular tone

Search Result 74, Processing Time 0.024 seconds

Anti-atherosclerotic Effect of the Methanol Extract of Sorbus commixta Cortex in the High Cholesterol-Diet Rats

  • Kang, Dae-Gill;Sohn, Eun-Jin;Kim, Jin-Sook;Lee, Yun-Jung;Moon, Mi-Kyoung;Lee, An-Sook;An, Jun-Seok;Lee, Ho-Sub
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.5
    • /
    • pp.1337-1345
    • /
    • 2006
  • Hypercholesterolemia is a pivotal pathogenic factor for the development and maintenance of atherosclerosis. The present study was designed to evaluate whether the methanol extract of Sorbus commixta cortex (MSC) restores vascular dysfunction in association with the aortic expressions of proinflarnmatory and adhesion molecules in high cholesterol (HC) diet-rats. Chronic treatment with low (100 mg/kg/day) or high doses (200 mg/kg/day) of MSC lowered the increase in plasma levels of triglyceride (TG) and low-density lipoprotein (LDL) cholesterol induced by a cholesterol-enriched diet without affecting on the plasma level of high density lipoprotein (HDL)-cholesterol. Vascular tone attenuated in the HC-diet rats was restored by administration with MSC. Treatment with MSC also suppressed the HC-induced increase in the monocyte chemoattractant protein-1 (MCP-1) and nuclear factor-$_K$B (NF-$_K$B) p65 expressions as well as expressions levels of adhesion molecules including intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (ICAM-1), and E-selectin in aorta. The present study also showed that MSC inhibited the HC-mediated induction of ET-1 and ACE expression. In histopathological examination, aortic segments in the HC-diet rat revealed thickening intima and media, which were blocked by administration with MSC. Taken together, MSC could suppress the development of atherosclerosis in the HC-diet rat model through the inhibition of the aortic expression levels of pro-inflammatory and adhesion molecules.

Analysis of Single Nucleotide Polymorphism of eNOS Genes in Korean Genome (한국인의 eNOS 유전자 SNP 분석)

  • Lee, Hyung-Ran;Kim, Su-Won;Yoo, Min
    • Journal of Life Science
    • /
    • v.24 no.2
    • /
    • pp.181-185
    • /
    • 2014
  • We identified SNPs (single nucleotide polymorphisms) for endothelial nitric oxide synthase (eNOS) genes in the Korean genome. eNOS is present in the vascular endothelium, platelets, and several other cell types that continuously produce modest amounts of NO. Endothelium-derived NO plays a key role in the regulation of vascular tone, and the impaired effects of NO on the cardiovascular system appear to be responsible for coronary atherosclerosis and thrombosis. In recent studies, a missense variant within exon 7 of the eNOS gene in patients with coronary spastic angina-GAG to GAT substitution, which results in the replacement of glutamic acid by aspartic acid (Glu298Asp [G894T])-has been identified and is known to be significantly associated with coronary spasm. We prepared PCR primers based on sequences in Genbank. Primers were prepared for normal and SNPs separately, as reported for other Asian countries, such as G894T. Their sequences were different only at the 3' ends so that primer extension could only by possible when base pairs between templates and primers matched. We also employed ARMS (Amplification Refractory Mutation System) technology to improve the specificity of the PCR reaction. In conclusion, we were able to demonstrate the eNOS G894A polymorphism in Korean gemone. This study should facilitate research on the cause of myocardial infarction and development on further therapy at the genetic level.

Effect of Sunghyangchungisan on Contractile Reactivity and $Ca^{2+}$ metabolism in Isolated Rabbit Carotid Artery (성향정기산(星香正氣散)이 가토의 경동맥(頸動脈) 평활근(平滑筋) 긴장(緊張) 및 $Ca^{2+}$ 대사(代謝)에 미치는 영향(影響))

  • Kim, Young-Gyun;Kweon, Jung-Nam;Kim, Jong-Hoon
    • The Journal of Internal Korean Medicine
    • /
    • v.21 no.3
    • /
    • pp.377-388
    • /
    • 2000
  • Objective : This study was undertaken to evaluate the effect of Sunghyangchungisan (SHCS) on the regulation of vascular tone and $Ca^{2+}$ metabolism in arterial tissues. Vascular rings isolated from rabbit carotid artery were myographed isometrically in isolated organ baths and the effect of SHCS on contractile activities, endothelial function and $Ca^{2+}$ metabolism were determined. Methods : In phentobarbital sodium-anesthetized rabbits, SHCS administered through ear vein (100 mg/Kg body wt.) or intragastric dwelling tube (300 mg/Kg body wt.) attenuated phenylephrine (PE, 10 ${\mu}g$/Kg, i.v.)-induced increases in both systolic and diastolic cartoid arterial blood pressure. Results : In experiments with isolated arterial strips, SHCS relaxed arterial rings which were pre-contracted by phenylephrine (PE, 1 ${\mu}M$). The responses to SHCS were partially dose-dependent at concentrations lower than 0.5 mg/ml. When SHCS was applied prior to the exposure to PE, it inhibited the PE-induced contraction by a similar magnitude which was comparable to the relaxation of pre-contracted arterial rings. Washout of SHCS after observing its relaxant effect resulted in a full recovery of PE-induced contractions, indicating that the action mechanism is reversible. The observation that SHCS did not change the $ED_{50)$ of PE oh its dose-response curve ruled out the possible interaction of SHCS with ${\alpha}$-receptors. The relaxant effect of SHCS was not affected by removal of endothelium or a nitric oxide synthase inhibitor, L-NAME. Methylene blue, an inhibitor of the soluble guanylate cyclase, did not affect the relaxant effect of SHCS. These results suggest that the action of SHCS is not mediated by the endothelium nor soluble guanylate cyclase. Constant cGMP production determined in arterial strips in the presence or absence of SHCS is consistent with this conclusion. When contraction was induced by additive application of $Ca^{2+}$ in arterial rings which were pre-depolarized by high $K^+$ in a $Ca^{2+}$-free solution, the relaxant effect of SHCS was attenuated by increasing the $Ca^{2+}$ concentration. SHCS, when applied to the arterial rings pre-contracted by PE and then relaxed by nifedipine, a $Ca^{2+}$ channel blocker, did not show additive relaxation. SHCS partially blocked $Ca^{2+}$ influx stimulated by PE and high $K^+$ which was determined by 5-min ^{45}Ca$ uptake, while it did not affect $Ca^{2+}$ efflux. Conclusions : From above results, it is suggested that SHCS relax PE-induced contraction of rabbit carotid artery in an endothelium independent manner, andinhibition of $Ca^{2+}$ influx may contribute to the underling mechanism.

  • PDF

Ginseng Saponins Enhance Maxi $Ca^{2+}-activated\;K^+$ Currents of the Rabbit Coronary Artery Smooth Muscle Cells

  • Chunl Induk;Kim Nak-Doo
    • Journal of Ginseng Research
    • /
    • v.23 no.4
    • /
    • pp.230-234
    • /
    • 1999
  • Potassium channels play an important role in regulating vascular smooth muscle tone. Four types of $K^+$ channels areknown to be expressed in vascular smooth muscle cells, and maxi $Ca^{2+}-activated\;K^+$ channel $(BK_{Ca})$ is a dominant type of $K^+$ channels in these cells. Because total ginseng saponins and ginsenoside $Rg_3$ cause vasodilation with unclear mechanisms, we hypothesized that total ginseng saponins and ginsenoside $Rg_3$ induce vasodilation via activation of maxi $Ca^{2+}-activated\;K+$ channels. Whole-cell BKe. currents were voltage-dependent with half maximum activation at -14 mV, and the currents were sensitive to nanomolar ChTX and millimolar TEA. External application of total ginseng saponins increased the anlplitude of the whole-cell BKe. current in a concentration-dependent manner. Single-channel analysis indicates that total ginseng saponins caused the channel opening for a longer period of time. Ginsenoside $Rg_3$ increased the amplitude of whole-cell $K_{Ca}$ currents without affecting voltage dependence of the currents and increased single-channel open time. Hence, the results suggest that ginseng saponin-induced vasodilation may be due to activation of $K_{Ca}$.

  • PDF

Effects of Histamine on Cultured Interstitial Cells of Cajal in Murine Small Intestine

  • Kim, Byung Joo;Kwon, Young Kyu;Kim, Euiyong;So, Insuk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.2
    • /
    • pp.149-156
    • /
    • 2013
  • Interstitial cells of Cajal (ICCs) are the pacemaker cells in the gastrointestinal tract, and histamine is known to regulate neuronal activity, control vascular tone, alter endothelial permeability, and modulate gastric acid secretion. However, the action mechanisms of histamine in mouse small intestinal ICCs have not been previously investigated, and thus, in the present study, we investigated the effects of histamine on mouse small intestinal ICCs, and sought to identify the receptors involved. Enzymatic digestions were used to dissociate ICCs from small intestines, and the whole-cell patch-clamp configuration was used to record potentials (in current clamp mode) from cultured ICCs. Histamine was found to depolarize resting membrane potentials concentration dependently, and whereas 2-PEA (a selective H1 receptor agonist) induced membrane depolarizations, Dimaprit (a selective H2-agonist), R-alpha-methylhistamine (R-alpha-MeHa; a selective H3-agonist), and 4-methylhistamine (4-MH; a selective H4-agonist) did not. Pretreatment with $Ca^{2+}$-free solution or thapsigargin (a $Ca^{2+}$-ATPase inhibitor in endoplasmic reticulum) abolished the generation of pacemaker potentials and suppressed histamine-induced membrane depolarization. Furthermore, treatments with U-73122 (a phospholipase C inhibitor) or 5-fluoro-2-indolyl des-chlorohalopemide (FIPI; a phospholipase D inhibitor) blocked histamine-induced membrane depolarizations in ICCs. On the other hand, KT5720 (a protein kinase A inhibitor) did not block histamine-induced membrane depolarization. These results suggest that histamine modulates pacemaker potentials through H1 receptor-mediated pathways via external $Ca^{2+}$ influx and $Ca^{2+}$ release from internal stores in a PLC and PLD dependent manner.

An Experimental Study on the Changes in the Pasteurized Femoral Vessels of the Dogs (저온열처리한 개의 대퇴 혈관의 변화에 대한 실험적 연구)

  • Kim, Jae-Do;Hong, Young-Gi;Seo, Jeong-Hwan
    • The Journal of the Korean bone and joint tumor society
    • /
    • v.3 no.1
    • /
    • pp.39-46
    • /
    • 1997
  • The pasteurization of bone tumor shows necrosis of tumor tissue and it is used widely as one of the options of limb salvage operation. However malignant tumors of the extremities commonly involve major neurovascular structures and pasteurization of this structure will make limb salvage operation much easier and safer than autogenous vein graft or artificial vessel graft. So the purpose of this study is to evaluate that the pasteurization can be applied in the limb salvage surgery of malignant tumor involving major vessels by means of studying the patency of pasteurized femoral vessels of the dogs. The right femoral arteries of 5 to 7 mm in diameters and veins of 7 to 10 mm in diameters of five dogs were pasteurized with sterile $60^{\circ}C$ saline for 30 minutes. Contralateral femoral vessels were evaluated for the control study. After one month, the changes in the pasteurized femoral vessels were evaluated by physical examinations, femoral angiography, gross findings, and pathologic findings on the each side. One month after pasteurization, the pulse of the femoral and popliteal arteries was palpated with normal tone on the each side of the all five experimental animals, and there was no gross swelling or necrotic changes in the legs. Femoral angiography showed a good patency of femoral and popliteal arteries. On the gross examinations at time of sampling of the specimen for the pathologic examinations, there was a good patency of femoral artery and vein, and mild fibrous adhesion was noted around the pasteurized femoral vessels. On the pathologic examinations, the more fibrotic adhesion and neocapillarization were noted in the outer layer of adventitia of the pasteurized femoral arteries and veins than the control sides. The vascular lumina were also patent in all cases. With these results, we suggest that the malignant tumor of the extremity involving major vessels is possibly treated by the limb salvage operation using the pasteurization of the involved vessels.

  • PDF

Change of voltage-gated potassium channel 1.7 expressions in monocrotaline-induced pulmonary arterial hypertension rat model

  • Lee, Hyeryon;Kim, Kwan Chang;Hong, Young Mi
    • Clinical and Experimental Pediatrics
    • /
    • v.61 no.9
    • /
    • pp.271-278
    • /
    • 2018
  • Purpose: Abnormal potassium channels expression affects vessel function, including vascular tone and proliferation rate. Diverse potassium channels, including voltage-gated potassium (Kv) channels, are involved in pathological changes of pulmonary arterial hypertension (PAH). Since the role of the Kv1.7 channel in PAH has not been previously studied, we investigated whether Kv1.7 channel expression changes in the lung tissue of a monocrotaline (MCT)-induced PAH rat model and whether this change is influenced by the endothelin (ET)-1 and reactive oxygen species (ROS) pathways. Methods: Rats were separated into 2 groups: the control (C) group and the MCT (M) group (60 mg/kg MCT). A hemodynamic study was performed by catheterization into the external jugular vein to estimate the right ventricular pressure (RVP), and pathological changes in the lung tissue were investigated. Changes in protein and mRNA levels were confirmed by western blot and polymerase chain reaction analysis, respectively. Results: MCT caused increased RVP, medial wall thickening of the pulmonary arterioles, and increased expression level of ET-1, ET receptor A, and NADPH oxidase (NOX) 4 proteins. Decreased Kv1.7 channel expression was detected in the lung tissue. Inward-rectifier channel 6.1 expression in the lung tissue also increased. We confirmed that ET-1 increased NOX4 level and decreased glutathione peroxidase-1 level in pulmonary artery smooth muscle cells (PASMCs). ET-1 increased ROS level in PASMCs. Conclusion: Decreased Kv1.7 channel expression might be caused by the ET-1 and ROS pathways and contributes to MCT-induced PAH.

Taurine relaxes human radial artery through potassium channel opening action

  • Ulusoy, Kemal Gokhan;Kaya, Erkan;Karabacak, Kubilay;Seyrek, Melik;Duvan, ibrahim;Yildirim, Vedat;Yildiz, Oguzhan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.6
    • /
    • pp.617-623
    • /
    • 2017
  • The vascular actions and mechanisms of taurine were investigated in the isolated human radial artery (RA). RA rings were suspended in isolated organ baths and tension was recorded isometrically. First, a precontraction was achieved by adding potassium chloride (KCl, 45 mM) or serotonin (5-hydroxytryptamine, 5-HT, $30{\mu}M$) to organ baths. When the precontractions were stable, taurine (20, 40, 80 mM) was added cumulatively. Antagonistic effect of taurine on calcium chloride ($10{\mu}M$ to 10 mM) -induced contractions was investigated. Taurine-induced relaxations were also tested in the presence of the $K^+$ channel inhibitors tetraethylammonium (1 mM), glibenclamide ($10{\mu}M$) and 4-aminopyridine (1 mM). Taurine did not affect the basal tone but inhibited the contraction induced by 5-HT and KCl. Calcium chloride-induced contractions were significantly inhibited in the presence of taurine (20, 40, 80 mM) (p<0.05). The relaxation to taurine was inhibited by tetraethylammonium (p<0.05). However, glibenclamide and 4-aminopyridine did not affect taurine -induced relaxations. Present experiments show that taurine inhibits 5-HT and KCl -induced contractions in RA, and suggest that large conductance $Ca^{2+}$-activated $K^+$ channels may be involved in taurine -induced relaxation of RA.

Biphasic augmentation of alpha-adrenergic contraction by plumbagin in rat systemic arteries

  • Kim, Hae Jin;Yoo, Hae Young;Zhang, Yin Hua;Kim, Woo Kyung;Kim, Sung Joon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.6
    • /
    • pp.687-694
    • /
    • 2017
  • Plumbagin, a hydroxy 1,4-naphthoquinone compound from plant metabolites, exhibits anticancer, antibacterial, and antifungal activities via modulating various signaling molecules. However, its effects on vascular functions are rarely studied except in pulmonary and coronary arteries where NADPH oxidase (NOX) inhibition was suggested as a mechanism. Here we investigate the effects of plumbagin on the contractility of skeletal artery (deep femoral artery, DFA), mesenteric artery (MA) and renal artery (RA) in rats. Although plumbagin alone had no effect on the isometric tone of DFA, $1{\mu}M$ phenylephrine (PhE)-induced partial contraction was largely augmented by plumbagin (${\Delta}T_{Plum}$, 125% of 80 mM KCl-induced contraction at $1{\mu}M$). With relatively higher concentrations (>$5{\mu}M$), plumbagin induced a transient contraction followed by tonic relaxation of DFA. Similar biphasic augmentation of the PhE-induced contraction was observed in MA and RA. VAS2870 and GKT137831, specific NOX4 inhibitors, neither mimicked nor inhibited ${\Delta}T_{Plum}$ in DFA. Also, pretreatment with tiron or catalase did not affect ${\Delta}T_{Plum}$ of DFA. Under the inhibition of PhE-contraction with L-type $Ca^{2+}$ channel blocker (nifedipine, $1{\mu}M$), plumbagin still induced tonic contraction, suggesting $Ca^{2+}$-sensitization mechanism of smooth muscle. Although ${\Delta}T_{Plum}$ was consistently observed under pretreatment with Rho A-kinase inhibitor (Y27632, $1{\mu}M$), a PKC inhibitor (GF 109203X, $10{\mu}M$) largely suppressed ${\Delta}T_{Plum}$. Taken together, it is suggested that plumbagin facilitates the PKC activation in the presence of vasoactive agonists in skeletal arteries. The biphasic contractile effects on the systemic arteries should be considered in the pharmacological studies of plumbagin and 1,4-naphthoquinones.

Self-Sufficient Catalytic System of Human Cytochrome P450 4A11 and NADPH-P450 Reductase

  • Han, Song-Hee;Eun, Chang-Yong;Han, Jung-Soo;Chun, Young-Jin;Kim, Dong-Hyun;Yun, Chul-Ho;Kim, Dong-Hak
    • Biomolecules & Therapeutics
    • /
    • v.17 no.2
    • /
    • pp.156-161
    • /
    • 2009
  • The human cytochrome P450 4A11 is the major monooxygenase to oxidize the fatty acids and arachidonic acid. The production of 20-hydroxyeicosatetraenoic acid by P450 4A11 has been implicated in the regulation of vascular tone and blood pressure. Oxidation reaction by P450 4A11 requires its reduction partners, NADPH-P450 reductase (NPR). We report the functional expression in Escherichia coli of bicistronic constructs consisting of P450 4A11 encoded by the first cistron and the electron donor protein, NPR by the second. Typical P450 expression levels of wild type and several N-terminal modified mutants was observed in culture media and prepared membrane fractions. The expression of functional NPR in the constructed P450 4A11: NPR bicistronic system was clearly verified by reduction of nitroblue tetrazolium. Membrane preparation containing P450 4A11 and NPR efficiently oxidized lauric acid mainly to $\omega$-hydroxylauric acid. Bicistronic coexpression of P450 4A11 and NPR in E. coli cells can be extended toward identification of novel drug metabolites or therapeutic agents involved in P450 4A11 dependent signal pathways.