• Title/Summary/Keyword: Vascular smooth muscle tension

Search Result 34, Processing Time 0.018 seconds

Induces Vasodilatation of Rat Mesenteric Artery in vitro Mainly by Inhibiting Receptor-Mediated $Ca^{2+}$ -Influx and $Ca^{2+}$ -Release

  • Cao Yong-Xiao;Zheng Jian-Pu;He Jian-Yu;Li Jie;Xu Cang-Bao;Edvinsson Lars
    • Archives of Pharmacal Research
    • /
    • v.28 no.6
    • /
    • pp.709-715
    • /
    • 2005
  • The purpose of this study was to investigate the effect of atropine on peripheral vasodilation and the mechanisms involved. The isometric tension of rat mesenteric artery rings was recorded in vitro on a myograph. The results showed that atropine, at concentrations greater than 1$\mu$M, relaxed the noradrenalin (NA)-precontracted rat mesenteric artery in a concentration-dependent manner. Atropine-induced vasodilatation was mediated, in part, by an endothelium-dependent mechanism, to which endothelium-derived hyperpolarizing factor may contribute. Atropine was able to shift the NA-induced concentration-response curve to the right, in a non-parallel manner, suggesting the mechanism of atropine was not mediated via the ${\alpha}_1$-adrenoreceptor. The $\beta$-adrenoreceptor and ATP sensitive potassium channel, a voltage dependent calcium channel, were not involved in the vasodilatation. However, atropine inhibited the contraction derived from NA and $CaCl_2$ in $Ca^{2+}$-free medium, in a concentration dependent manner, indicating the vasodilatation was related to the inhibition of extracellular $Ca^{2+}$ influx through the receptor-operated calcium channels and intracellular $Ca^{2+}$ release from the $Ca^{2+}$ store. Atropine had no effect on the caffeine-induced contraction in the artery segments, indicating the inhibition of intracellular $Ca^{2+}$ release as a result of atropine most likely occurs via the IP3 pathway rather than the ryanodine receptors. Our results suggest that atropine-induced vasodilatation is mainly from artery smooth muscle cells due to inhibition of the receptor-mediated $Ca^{2+}$-influx and $Ca^{2+}$-release, and partly from the endothelium mediated by EDHF.

Further Investigation of the Action Mechanism of GS 389: a Thromboxane $A_2$ Antagonistic Action

  • Noh, Hong-Ki;Chang, Ki-Churl
    • Biomolecules & Therapeutics
    • /
    • v.3 no.2
    • /
    • pp.143-148
    • /
    • 1995
  • Recently, we reported that GS 389 has vasodilating action without cardiac inotropic action (Chang et al., Can. J. Physiol. Pharmacol. 72, 327-334, 1994). However the mechanism of action of GS 389 has not been thoroughly evaluated. In the present study, we performed functional study of GS 389 in rat trachealis, thoracic aorta, pig coronary artery by isometric tension and in human platelets by aggregation experiments. We also tested if GS 389 influences on $Ca^{2+}$movement and inositol phosphate metabolism. In rat trachealis, GS 389 concentration-dependently relaxed carbachol (0.1 $\mu$M)- and high $K^{+}$(65.4 mM)-induced contraction with p$IC_{50}$/ of 4.43$\pm$ 0.19 and 4.11$\pm$0.12, respectively. In $Ca^{2+}$-free media, GS 389 inhibited carbachol-induced phasic contraction. In rat thoracic aorta, GS 389 inhibited $^{45}$ Ca uptake due to norepinephrine and high $K^{+}$, indicating that GS 389 has direct inhibitory action of $Ca^{2+}$movement. Furthermore, GS 389 competitively inhibited U46619-induced contraction in rat thoracic aorta and pig coronary artery with K, values of 5.23$\pm$0.12 and 5.56$\pm$0.14, respectively, and inhibited U 46619-induced phosphatidylinositide (PI) turnover in rat aorta. GS 389 also concentration-dependently inhibited the human platelet aggregation against U 46619 with p$IC_{50}$/ 5.66$\pm$0.02. These results indicate that GS 389 has thromboxane $A_2$ antagonistic action in vascular and platelets as well as direct action on $Ca^{2+}$ movement, which may account, at least in part, for relaxing action of rat trachealis. trachealis.

  • PDF

Contractile Action of Barium in the Rabbit Renal Artery (가토 신동맥 평활근에서 Barium의 수축작용)

  • Jeon, Byeong-Hwa;Kim, Sahng-Seop;Kim, Se-Hoon;Chang, Seok-Jong
    • The Korean Journal of Physiology
    • /
    • v.24 no.2
    • /
    • pp.293-303
    • /
    • 1990
  • The contractile action of barium $(Ba^{2+})$ was investigated in the arterial strip of rabbit renal artery. The helical strip of isolated renal artery was immersed in the Tris-buffered Tyrode's solution equilibrated with 100% $O_2$ at $37^{\circ}C$ and its isometric tension was measured. $Ba^{2+}-induced$ contraction of arterial strip was dose-dependent and its maximal tension corresponded to $92.1{\pm}4.5%$ of tension by $K^+(100\;mM)$. $Ba^{2+}-induced$ contraction did not show the tachyphylactic phenomenon in the normal Tyrode's solution. $Ba^{2+}$ induced the tonic contraction in the $Ca^{2+}-free$ tyrode's solution and that was increased by the extracellula addition of $Ca^{2+}$. During the repeated exposure of the same dose of $Ba^{2+}\;(10\;mM)$ in the $Ca^{2+}-free$ Tyrode's solution, $Ba^{2+}-induced$ contraction was progressively decreased. Even though the intracellular NE-and caffeine-sensitive $Ca^{2+}$ was depleted, $Ba^{2+}$ induced the tonic contraction. After the pretreatment of lanthnum or verapamil, $Ba^{2+}$ did not induce contraction. $Ba^{2+}-induced$contraction was suppressed by extracellular $K^+$ in the normal Tyrode's solution and that was dependent on $K^+$ concentration. Suppressive effect of $K^+\;(14\;mM)$ on the $Ba^{2+}-induced$ contraction was also dependent on the intracellular $Ca^{2+}$ concentration. From the above resuts, it is suggested that $Ba^{2+}$ activate indirectly the contractile process by promoting the mobilization of intracellular $Ca^{2+}$ and the influx of extracellular $Ca^{2+}$. It is also suggested that action of $Ba^{2+}$ on the $Ca^{2+}-activated$ $K^+$ channel can result in the depolarization of cell membrane in the rabbit renal artery.

  • PDF

Effect of Hvperkalemia and Hypothermia on Endothelium-dependent Relaxation of the Rat Aorta (고칼륨과 저온이 흰쥐 대동맥의 내피세포의존성이 완능에 미치는 영향)

  • 이응배;전상훈
    • Journal of Chest Surgery
    • /
    • v.29 no.12
    • /
    • pp.1299-1305
    • /
    • 1996
  • The rat thoracic aorta was harvested to determine whether either hyperkalemla or hypothermia impairs the endothelium-dependent re axation of the vascular smooth muscle. Isolated thoracic aorta segments were studied in five groups(n=10 in each group). In group I(control), the isolated aortic seglnents were suspended in organ bath without any intervention. In group ll(endotheilum removAl). the endothelium of the aortic segment was removed by gentle rubbing of the intimal surface with a pair of forceps. In group III(457), IV(4mST), and V(3757), the aortic segments were exposed for 45minutes to 4$^{\circ}C$ St. Thomas hospital cardioplegic solution(57 : NaCl, 144.3; KCI, 19.6, MgCl:, 15.7 : CaCl, 2.2 mmol/L).4$^{\circ}C$ modified St. Thomas hospital cardioplegic solution(NaCl, 144.3 : KCI. 140.0 : MgCl:, 15.7; CaCl:. 2.2 mmol/L). and 37$^{\circ}C$ 57, before suspending in the organ bath, respectively. Then, aorta segments were suspended in organ baths(physiologic salt solution, 37$^{\circ}C$, 95% oxygen and 5% carbon dioxide) for Isometric tension recording. The vasodilatation to acetylcholine (10-2 to 10-2mol/L) was not impaired in control, 457, 4mST, nd 3757 groups. The vasodilatation to acetylcholine was impaired in endothelium removal group. The vasodilatation to sodium nitroprusslde (10-2 to 10-2 mol/L) was not impaired in all groups. In conclusion, both hyperkalemia and hypothermia do not alter irreversibly the function of the rondothelium of the thoracic aorta of the rat.

  • PDF