• Title/Summary/Keyword: Vascular smooth muscle tension

Search Result 34, Processing Time 0.031 seconds

The Role of Actin Binding Protein -Caldesmon- of the Mechanism of $Ca^{2+}$-dependent/-independent Smooth Muscle Contraction - Approach of Basic Medical for the Study of Senile Cardiovascular Disease-related Senile Physical Therapy - (세포 내 $Ca^{2+}$-의존성/-비의존성 평활근 수축기전에 대한 액틴결합단백질-Caldesmon-의 역할 - 노인성 심혈관질환 관련 노인물리치료 연구를 위한 기초의학적 접근 -)

  • Kim, Jung-Hwan;Min, Kyung-Ok;Choi, Young-Duk;Lee, Joon-Hee;Chon, Ki-Young
    • Journal of Korean Physical Therapy Science
    • /
    • v.11 no.1
    • /
    • pp.20-27
    • /
    • 2004
  • It is widely accepted that smooth muscle contraction is triggered by intracellular $Ca^{2+}$ ($[Ca^{2+}]_i$) released from intracellular $Ca^{2+}$ stores such as sarcoplasmic reticulum (SR) and from the extracellular space, The increased $[Ca^{2+}]_i$ can phosphorylate the 20-kDa myosin light chain ($MLC_{20}$) by activating MLC kinase (MLCK), and this initiates smooth muscle contraction. In addition to the $[Ca^{2+}]_i$-MLCK-tension pathway, a number of intracellular signal molecules, including mitogen-activated protein kinase (MAPK), protein kinase C (PKC), phosphatidylinositol 3-kinase (PI3K), and Rho-associated coiled coil-forming protein kinase (ROCK), play important roles in the regulation of smooth muscle contraction. However, the mechanisms regulating contraction of caldesmon (CaD), actin-binding protein, are not entirely elucidated in the presence of $Ca^{2+}$. It is known that CaD tightly interacts with actin and inhibits actomyosin ATPase activity. Therefore, the purpose of the present study was to investigate the roles of $Ca^{2+}$-dependent CaD in smooth muscle contraction. Endothelin-1 (ET-1), G-protein coupled receptor agonist and vasoconstrictor, increased both vascular smooth contraction and phosphorylation of CaD in the presence of $Ca^{2+}$. These results suggest that ET-1 induces contraction and phosphorylation of CaD in rat aortic smooth muscle, which may he mediated by the increase of $[Ca^{2+}]_i$.

  • PDF

Effect of Magnesium on the Contractility of the Isolated Guinea-Pig Aortic and Rat Smooth Muscles (마그네슘이온이 적출한 기니피그 대동맥평활근과 흰쥐 자궁평활근의 수축성에 미치는 효과에 관한 연구)

  • Ahn, Hyuk;Hwang, Sang-Ik
    • Journal of Chest Surgery
    • /
    • v.23 no.3
    • /
    • pp.452-464
    • /
    • 1990
  • It is well known that extracellular Calcium plays a very important role in several steps of smooth muscle excitability and contractility, and there have been many concerns about factors influencing the distribution of extracellular Ca++ and the Ca++ flux through the cell membrane of the smooth muscle. Based on the assumption that Mg++ may also play an important role in the excitation and contraction processes of the smooth muscle by taking part in affecting Ca++ distribution and flux, many researches are being performed about the exact role of Mg++, especially in the vascular smooth muscle. But yet the effect of Mg++ in the smooth muscle activity is not clarified, and moreover the mechanism of Mg++ action is almost completely unknown. Present study attempted to clarify the effect of Mg++ on the excitability and contractility in the multiunit and unitary smooth muscle, and the mechanism concerned in it. The preparations used were the guinea-pig aortic strip as the experimental material of the multiunit smooth muscle and the rat uterine strip as the one of the unitary smooth muscle. The tissues were isolated from the sacrificed animal and were prepared for recording the isometric contraction. The effects of Mg++ and Ca++ were examined on the electrically driven or spontaneous contraction of the preparations. And the effects of these ions were also studied on the K+ or norepinephrine contracture. All experiments were performed in tris-buffered Tyrode solution which was aerated with 100% 02 and kept at 35oC. The results obtained were as follows: 1] Mg++ suppressed the phasic contraction induced by electrical field stimulation dose-dependently in the guinea-pig aortic strip, while the high concentration of Ca++ never recovered the decreased tension. These phenomena were not changed by the a - or b - adrenergic blocker. 2]Mg++ played the suppressing effect on the low concentration [20 and 40 mM] of K+-contracture in the aortic muscle, but the effect was not shown in the case of 100mM K+-contracture. 3] Mg++ also suppressed the contracture induced by norepinephrine in the aortic preparation. And the effect of Mg++ was most prominent in the contracture by the lowest [10 mM] concentration of norepinephrine. 4] In both the spontaneous and electrically driven contractions of the uterine strip, Mg++ decreased the amplitude of peak tension, and by the high concentration of Ca++ the amplitude of tension was recovered unlike the aortic muscle. 5] The frequency of the uterine spontaneous contraction increased as the [Ca++] / [Mg++] ratio increased up to 2, but the frequency decreased above this level. 6] Mg++ decreased the tension of the low[20 and 40mM] K+-contracture in the uterine smooth muscle, but the effect did not appear in the 100mM K+-contracture. From the above results, the following conclusion could be made. 1] Mg++ seems to suppress the contractility directly by acting on the smooth muscle itself, besides through the indirect action on the nerve terminal, in both the aortic and uterine smooth muscles. 2] The fact that the depressant effect of Mg++ on the K+-contracture is in inverse proportion to an increase of K+ concentration appears resulted from the extent of the opening state of the Ca++ channel. 3] Mg++ may play a depressant role on both the potential dependent and the receptor-operated Ca++ channels. 4] The relationship between the actions of Mg++ and Ca++ seems to be competitive in uterine muscle and non-competitive in aortic strip.

  • PDF

The Effects of Prostaglandin $F_{2{\alpha}}$ on the Contractility of Vascular Smooth Muscle in the Aortic Strip of Rabbits (Prostaglandin $F_{2{\alpha}}$가 가토 대동맥 평활근 수축성에 미치는 영향)

  • Chung, Soo-Sung;Kim, Se-Hoon;Chang, Seok-Jong;Park, Hae-Kun
    • The Korean Journal of Physiology
    • /
    • v.23 no.1
    • /
    • pp.99-108
    • /
    • 1989
  • The effects of prostaglandin $(PGF_{2{\alpha}})$ on the contractility of vascular smooth muscle were investigated in the helical strip of the rabbit aorta. The aortic strip was immersed in the phosphate-buffered Tyrode's solution which was equilibrated with 100% $O_{2}$ at $35^{\circ}C$ and its isometric tension was measured. The contraction was induced by $(PGF_{2{\alpha}})$, norepinephrine (NE), or potassium (40 mM) in the nomal Tyrode's solution (1 mM, $Ca^{2+}$) or $Ca^{2+}-free$ Tyrode's solution. Effects of verapamil and phentolamine on the contraction were also observed. The aortic strip began to contract at the concentration of $5\;{\mu}g%$ and reached the maximal contraction at the concentration of $150\;{\mu}g%$ $(PGF_{2{\alpha}})$. The maximal contraction was corresponded respectively to $52.2{\pm}3.0%$ and $81.5{\pm}3.5%$ of maximal contraction by NE $(1{\times}10^{-5}M)$ and 40 mM $K^{+}$. And the maximal contractions by $(PGF_{2{\alpha}})$ or NE were induced at the concentration of about 1 mM $Ca^{2+}$. $(PGF_{2{\alpha}})$ induced the contraction of aortic strip even after induction of contraction by 40 mM $K^{+}$ and the contraction by $(PGF_{2{\alpha}})$ was not blocked by the ${\alpha}-receptor$ blocker, phentolamine. And the contraction by the $(PGF_{2{\alpha}})$ was inhibited partially by a verapamil at the concentration of $1{\times}10^{-5}M$ and the contraction began to increase at the concentration of $1{\times}10^{-4}M$ verapamil. Whereas the contraction by NE was completely blocked by verapamil. Though both the $(PGF_{2{\alpha}})$ and NE induced the contraction in the $Ca^{2+}-free$ Tyrode's solution, the peak tension was not maintained. But the rate of tension decline was lower in the contraction by $(PGF_{2{\alpha}})$ than in that by NE. The verapamil did not inhibit the contraction by $(PGF_{2{\alpha}})$ in the $Ca^{2+}-free$ Tyrode's solution and increased the contraction at the concentration of above $1{\times}10^{-4}M$. The NE-induced contraction in the $Ca^{2+}-free$ Tyrode's solution was inhibited completely by a verapamil. From the above results it is suggested that the contraction induced by $(PGF_{2{\alpha}})$ results from the promotion of the both $Ca^{2+}$ influx and the intracellular $Ca^{2+}$ release by different way from NE.

  • PDF

The Inhibitory Effect of Broccoli in Cruciferous Vegetables Derived-Sulforaphane on Vascular Tension (브로콜리 유래 Sulforaphane의 혈관 수축성 조절 효과)

  • Je, Hyun Dong
    • YAKHAK HOEJI
    • /
    • v.58 no.4
    • /
    • pp.223-228
    • /
    • 2014
  • The present study was undertaken to investigate the influence of sulforaphane on vascular smooth muscle contractility and to determine the mechanism involved. We hypothesized that sulforaphane, the primary ingredient of broccoli of cruciferous vegetables, plays a role in vascular relaxation through inhibition of Rho-kinase in rat aortae. Intact of denuded arterial rings from male Sprague-Dawley rats were used and isometric tensions were recorded using a computerized data acquisition system. Interestingly, sulforaphane significantly inhibited fluoride, phorbol ester or thromboxane $A_2$ mimetic-induced contraction in denuded muscles suggesting that additional pathways different from endothelial nitric oxide synthesis such as inhibition of Rho-kinase or MEK might be involved in the vasorelaxation. Furthermore, sulforaphane inhibited thromboxane $A_2$-induced increases in pERK1/2 levels suggesting the mechanism including inhibition of thromboxane $A_2$-induced increases in ERK1/2 phosphorylation. This study provides evidence that sulforaphane induces vascular relaxation through inhibition of Rho-kinase or MEK in rat aortae.

Effect of Curcuma Longa Derived-curcumin on Vascular Tension (강황 유래 Curcumin의 Rho-kinase 억제를 통한 혈관이완작용)

  • Je, Hyun Dong
    • YAKHAK HOEJI
    • /
    • v.57 no.5
    • /
    • pp.376-381
    • /
    • 2013
  • The present study was undertaken to investigate the influence of curcumin on vascular smooth muscle contractility and to determine the mechanism involved. We hypothesized that curcumin, the primary ingredient of Curcuma longa, plays a role in vascular relaxation through inhibition of Rho-kinase in rat aortae. Denuded arterial rings from male Sprague-Dawley rats were used and isometric tensions were recorded using a computerized data acquisition system. Interestingly, curcumin inhibited fluoride-induced contraction but didn't inhibit phorbol ester-induced contraction suggesting that additional pathways different from endothelial nitric oxide synthesis might be involved in the vasorelaxation. Furthermore, curcumin significantly inhibited fluoride-induced increases in pMYPT1 levels. On the other hand, it didn't significantly inhibit phorbol ester-induced increases in pERK1/2 levels suggesting the mechanism involving inhibition of fluoride-induced MYPT1 phosphorylation. This study provides evidence that curcumin induces vascular relaxation through inhibition of Rho-kinase in rat aortae.

Effect of pH Change on Vascular Smooth Muscle Contractility in Rat Superior Mesenteric Artery and Its Branches (쥐 상장간막 동맥과 그 분지에서 pH 변화가 혈관평활근 수축성에 미치는 영향)

  • Choi, Soo-Seung
    • Journal of Chest Surgery
    • /
    • v.43 no.4
    • /
    • pp.345-355
    • /
    • 2010
  • Background: Extracellular and intracellular pH ($pH_o$ and $pH_i$), which can be changed in various pathological conditions such as hypoxia, affects vascular contractility. To elucidate the mechanism to alter vascular contractility by pH, the effects of pH on reactivity to vasocontracting agents, intracellular $Ca^{2+}$ influx, and $Ca^{2+}$ sensitivity in vascular smooth muscle were examined. Material and Method: Isometric contractions in rat superior mesenteric arteries (SMA) were observed. Intracellular $Ca^{2+}$ concentration ($[Ca^{2+}]_i$) was recorded by microfluorometer using Fura-2/acetoxylmethyl ester in muscle cells. $pH_o$ was increased from 7.4 to 7.8 or decreased to 6.9 or 6.4. $pH_i$ was decreased by applying $NH_4^+$ or propionic acid or modulated by changing $pH_o$ after increasing membrane permeability using $\beta$-escin. Result: Decreases in $pH_o$ from 7.4 to 6.9 or 6.4 shifted concentration-response curve by norepinephrine (NE) or serotonin (SE) to the right and significantly increased half maximal effective concentration (EC50) to NE or SE. Increase in $pH_o$ from 7.4 to 7.8 shifted concentration-response curve by norepinephrine (NE) or serotonin (SE) to the left and significantly reduced EC50 to NE or SE. NE increased $[Ca^{2+}]_i$ in cultured smooth muscle cells from SMA and the increased $[Ca^{2+}]_i$ was reduced by decreases in $pH_o$. NE-induced contraction was inhibited by $NH_4^+$, whereas the resting tension was increased by $NH_4^+$ or propionic acid. When the cell membrane of SMA was permeabilized using ${\beta}$-escin, SMA was contracted by increasing extracellular $Ca^{2+}$ concentration from 0 to $10{\mu}M$ and the magnitude of contraction was decreased by a decrease in $pH_o$ and vice versa. Conclusion: From these results, it can be concluded that a decrease in $pH_o$ might inhibit vascular contraction by reducing the reactivity of vascular smooth muscle to vasoactive agents, $Ca^{2+}$ influx and the sensitivity of vascular smooth muscle to $Ca^{2+}$.

Enhanced Expression of Inducible Nitric Oxide Synthase May Be Responsible for Altered Vascular Reactivity in Streptozotocin-induced Diabetic Rats

  • Jang, Jae-Kwon;Kang, Young-Jin;Seo, Han-Geuk;Seo, Sook-Jae;Chang, Ki-Churl
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.3 no.4
    • /
    • pp.375-382
    • /
    • 1999
  • Growing evidence indicates that enhanced generation or actions of nitric oxide (NO) are implicated in the pathogenesis of hypertension in spontaneously hypertensive rats and diabetic nephropathy in streptozotocin (STZ)-induced diabetic rats. We investigated whether inducible nitric oxide synthase (iNOS) expression in STZ-induced diabetic rats is responsible for the alterations of vascular reactivity. Diabetic state was confirmed 28 days after injection of STZ (i.p) in rats by measuring blood glucose. In order to evaluate whether short term (4 weeks) diabetic state is related with altered vascular reactivity caused by iNOS expression, isometric tension experiments were performed. In addition, plasma nitrite/nitrate (NOx) levels and expression of iNOS in the lung and aorta of control and STZ-treated rats were compared by using Griess reagent and Western analysis, respectively. Results indicated that STZ-treated rats increased the maximal contractile response of the aorta to phenylephrine (PE), and high $K^+,$ while the sensitivity remained unaltered. Endothelium-dependent relaxation, but not SNP-mediated relaxation, was reduced in STZ-treated rats. Plasma nitrite/nitrates are significantly increased in STZ-treated rats compared to controls. The malondialdehyde (MDA) contents of liver, serum, and aorta of diabetic rats were also significantly increased. Furthermore, nitrotyrosine, a specific foot print of peroxynitrite, was significantly increased in endothelial cells and smooth muscle layers in STZ-induced diabetic aorta. Taken together, the present findings indicate that enhanced release of NO by iNOS along with increased lipid peroxidation in diabetic conditions may be responsible, at least in part, for the augmented contractility, possibly through the modification of endothelial integrity or ecNOS activity of endothelium in STZ-diabetic rat aorta.

  • PDF

EFFECT OF GINSENG SAPONIN ON THE VASCULAR SMOOTH MUSCLE

  • Lee Kwang Soo
    • Proceedings of the Ginseng society Conference
    • /
    • 1980.09a
    • /
    • pp.71-76
    • /
    • 1980
  • Aortic strips were prepared from rabbits, and the tensions were maintained by administration of norepinephrine into the incubation chamber. The application of diol or triol induced relaxation of the aortic strip, as indicated by the decreased aortic tension. Triol, in a concentration of $30\;mg\%\;causes\;approximately\;50\%$ of muscle relaxation, whereas a similar degree of relaxation is induced by $50\;mg\%$ of diol. This indicates that both triol and diol cause relaxation of the aorta, but that triol is about $170\%$ more potent than diol. It is well established that blood-vessel smooth-muscle tone is regulated by the available intracellular $Ca^{++}$ concentration, which in turn is profoundly influenced by interaction of the cellular membrane and sarcoplasmic reticulum in the smooth muscle. Thus, any agent which modifies the smooth-muscle tone is expected to interfere with the $Ca^{++}$ binding or uptake of sarcolemma and sarcoplasmic reticulum. In the following experiments sarcoplasmic reticulum and sarcolemma were prepared from the ventricle of rabbit heart, and the active $Ca^{++}$ uptake by these cellular components was measured employing $Ca^{45}$ in the presence of triol and diol. It was found that the active $Ca^{++}$ uptake in the presence of ATP by sarcoplasmic reticulum was inhibited by both triol and diol. Panaxatriol, in a concentration of $80\;mg\;\%,$ inhibited $Ca^{++}$ uptake by $30\%,$ whereas panaxatriol in the same concentration inhibited uptake by $20\%.$ It is clear that triol is a more potent inhibitor of active $Ca^{++}$ transport in sarcoplasmic reticulum than diol. The $Ca^{++}$ binding of the cellular membrane was also studied employing Ca45 and milipore techniques. It was found that triol in a concentration of $80\;mg\;\%,$ decreased $Ca^{++}$ binding by $29\%.$ Diol in the same concentration decreased the binding by $17\%.$ It is clear that both triol and diol inhibit $Ca^{++}$ binding to the cellular membrane, but triol is approximately $180\%$ more potent than diol.

  • PDF

Effects of Radix Angelicae Gigantis and Resina Ferulae on the Relaxation of Smooth Muscle and Expression of iNOS (당귀 및 아위가 평활근 이완과 iNOS 발현에 미치는 영향)

  • 김성재;송봉근;이언정;김형균;김중길
    • The Journal of Korean Medicine
    • /
    • v.21 no.2
    • /
    • pp.60-67
    • /
    • 2000
  • Objectives : Radix Angelicae Gigantis(RAG) and Resina Ferulae(RF) have been used in oriental medicine or folk medicine to increase stamina. The aim of this study was the characterization of the mechanism of action of RAG and RF on smooth muscle and macrophages in rats to find new substances for the treatment of erectile dysfunction, cardiovascular diseases and immune dysfunction. Methods : We investigated the effects of the water extracts of RAG and RF on phenylephrine or KCl-contracted rat endothelium-denuded aorta, the production of NO in vascular smooth muscle cell (VSMC) and the production of NO and induction of iNOS in the $IFN-{\gamma}-primed$ RAW 264.7 cells. Results : The water extracts of the RAG and RF showed significant concentration-dependent relaxation effects on phenylephrine or KCl-contracted rat endothelium-denuded aorta. It also reduced the tension of the rat endothelium denuded aorta which was contracted in $Ca^{2+}-free$ media. On the other hand, it increased production of NO in VSMC which was stimulated with $IL-{\beta}$ or $IL-{\beta}$ plus $IFN-{\gamma}$. The water extracts of RAG and RF increased production of NO and induction of iNOS in the $IFN-{\gamma}-primed$ RAW 264.7 cells. Conclusions : According to the above results, the water extracts of RAG and RF relaxed the smooth muscle effectively and increased the production of NO in VSMC and macrophages. So, these herbs can be applied to erectile dysfunction, hypertension, angina pectoris, artherosclerosis and a defense defect for virus or microbe.

  • PDF

Effect of Blood Pressure on Contractility of Vascular Smooth Muscle and Endothelium-Dependent Relaxation

  • Suh, Suk-Hyo;Park, Yee-Tae;Lee, Dong-Chul;Seo, Pil-Won;Kim, Ki-Whan
    • The Korean Journal of Physiology
    • /
    • v.29 no.2
    • /
    • pp.279-289
    • /
    • 1995
  • This study was designed 1) to develop a hypertensive animal model in which the blood pressures (BPs) of symmetric regions (right and left upper extremities) are significantly different and 2) to test the effect of BP per se on the contractility and endothelium-dependent relaxation of vascular smooth muscle. Rabbits were anesthetized with sodium pentobarbital and ventilated with room air via animal respirator. The transverse aorta was exposed through the left second intercostal space and the lumen of the aorta was narrowed partially by ligation using 3-0 silk and a probe at a point between the origins of the brachiocephalic trunk and the left subclavian artery. Four to eight weeks postoperatively, BPs were measured in the carotid artery as the high BP area (proximal to coactation site) and in the femoral artery as the low BP area (distal to coarctation site). In the animal model, pressure-overload hypertension was developed and the BP of the right subclavian artery was higher than that of the left subclavian artery. The concentrations of circulating epinephrine, norepinephrine, angiotensin I, and angiotensin II were measured. The right and left subclavian arteries and their branches were used for isometric tension recording in organ baths and their responsiveness to phenylephrine, serotonin, acetylcholine, and sodium nitroprusside were examined. The BPs of carotid and femoral artery in control animals were $116{\pm} 12/75{\pm}9\;mmHg (mean ${\pm}SEM$) and $130{\pm}16/68{\pm}9\;mmHg$ respectively, while those of carotid and femoral artery in the hypetensive animals were $172{\pm}6/111{\pm}10\;mmHg$ and 136{\pm} 4/100 {\pm}9\;mmHg$ respectively. There were no significant differences in the concentrations of circulating epinephrine, norepinephrine, angiotensin I, and angiotensin II between controls and the animal models. No significant differences were found in the vascular sensitivities to phenylephrine and serotonin between the high pressure-exposed vessels and the low pressure-exposed vessels. However, the endothelium-dependent relaxation to acetylcholine and nitroprusside-induced relaxation showed significant differences between the high pressure-exposed and the low pressure-exposed subclavian arteries. From the above results, we suggest that the contractility of vascular smooth muscle is unchanged by the elevated pressure per se. However, the endothelium-dependent relaxation to acetylcholine and the nitroprusside-induced relaxation are attenuated by pressure.

  • PDF