• 제목/요약/키워드: Vascular endothelial growth factor receptor (VEGFR)

검색결과 59건 처리시간 0.026초

마우스에서 확립된 타액선 동위종양에서 혈관성 전이관련 인자의 발현 (EXPRESSIONS OF VASCULAR METASTASIS RELATED FACTORS IN MURINE ORTHOTOPIC TUMOR MODELS OF SALIVARY GLANDS)

  • 장재현;권광준;박영욱
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제29권6호
    • /
    • pp.499-508
    • /
    • 2007
  • Background and Purpose: Some subtypes of malignant salivary gland tumors such as adenoid cystic carcinoma (ACC) frequently result in distant metastasis of vascular origin, which are main causes of treatment failure. The reasons for the affinity for vascular metastatic potential are unclear. Therefore, molecular characteristics that influence the dissemination of metastatic tumor cells are important for the design of more effective treatment of salivary ACC. Tumor angiogenesis has been known to be essential for the distant metastasis of malignant cells. So, we determined expressions of vascular metastasis related factors in orthotopic (parotid) murine models of parotid ACC and compared with those in ectopic (subcutis) tumors of athymic mice. Experimental Design: Using specimens from murine parotid (orthotopic, experimental group) and subcutaneous (ectopic, control group) tumors, which have developed via transplantation of tumor cells, originated from human parotid ACC, we performed immunohistochemical assays with anti-vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF, FGF2), matrix metalloproteinase (MMP)-9, and interleukin (IL)-8 antibodies. We also performed immunohistochemical assays with VEGF receptor (VEGFR)-1, VEGFR-2, VEGFR-3, and phosphorylated VEGFR-2. Results: Transplantation of human ACC tumor cell $(5{\times}10^5)$ into the parotid and subcutis successfully resulted in orthotopic (parotid) and ectopic (subcutaneous) tumors in athymic mice. Immunohistochemical staining demonstrated higher expression of major angiogenic factors (VEGF, bFGF, MMP-9) in the orthotopic tumors than in ectopic tumors (P<0.05). But the expression level of angiogenic receptors were same in orthotopic and ectopic tumors of parotid ACC. Conclusion: VEGF, bFGF, and MMP-9 could be a good candidates for antiangiogenic therapy for the contol of vascular metastatic lesions of salivary ACC.

정신분열병 환자에서 항정신병약물 치료가 혈청 VEGF, sVEGFR-1 및 sVEGFR-2의 농도에 미치는 영향 - 예 비 연 구 - (The Effect of Antipsychotic Drug Treatment on Serum VEGF, sVEGFR-1, and sVEGFR-2 Level in Schizophrenia - A Preliminary Study -)

  • 김태현;김도훈;이상규;손봉기;정전섭
    • 생물정신의학
    • /
    • 제14권4호
    • /
    • pp.232-240
    • /
    • 2007
  • 목 적: Cytokine 중의 하나인 vascular endothelial growth factor(VEGF)와 VEGF 수용체들은 다양한 생체내 조절 및 질병 상태와 연관이 있음이 알려져 있다. 본 연구는 정신분열병 환자에서 항정신병약물 치료에 따른 혈청내 자유(free) VEGF와 가용성 VEGFR-1, 가용성 VEGFR-2의 변화를 보기 위한 것이었다. 방 법: 각 환자들은 DSM-IV 진단기준에 의해 정신분열병으로 진단을 받았고, 약물투여 시작일을 기준으로 4주째 및 8주째에 추적 관찰하였다. 모두 13명이 환자군에 포함되었으며 항정신병약물 투여전과 투여후 4주째, 8주째에 각각 PANSS에 의한 상태 평가와 함께 자유 VEGF, sVEGFR-1, sVEGFR-2의 농도를 측정하였다. 13명의 정상 대조군을 환자군의 나이와 성별에 맞춰 선정하였다. 결 과: 정신분열병 환자군의 혈청 자유 VEGF($295.2{\pm}43.7$pg/ml)와 sVEGFR-2($8259{\pm}336.7$)의 농도는 정상 대조군($199.0{\pm}28.8$$8481{\pm}371.9$)과 비교하였을 때 의미있는 차이를 보이지 않았다. 그러나 sVEGFR-1의 농도($86.2{\pm}10.3$, p<0.05)는 정신분열병 환자군에서 대조군($59.0{\pm}6.4$)에 비해 의미있게 상승하였다. 정신분열병 환자군에서 항정신병약물 투여 후 자유 VEGF 농도는 4주째($338.9{\pm}56.5$)와 8주째($309.5{\pm}58.7$) 모두 투여 전과 비교하여 차이가 없었다. 그러나 sVEGFR-1 농도는 약물 치료후 8주째($57.3{\pm}6.3$, p<0.05)에 측정한 결과에서 유의하게 감소하였다. sVEGFR-2의 농도도 치료전과 비교하였을때 약물 치료후 4주째($7761{\pm}403.0$, p<0.05)와 8주째($7435{\pm}333.5$, p<0.05) 모두 유의하게 감소하였다. 결 론: sVEGFR-1과 sVEGFR-2 농도의 감소는 항정신병약물이 작용하는 도파민 신경계와 관련된 것으로 추정된다.

  • PDF

New Model of In-situ Xenograft Lymphangiogenesis by a Human Colonic Adenocarcinoma Cell Line in Nude Mice

  • Sun, Jian-Jun;Jing, Wei;Ni, Yan-Yan;Yuan, Xiao-Jian;Zhou, Hai-Hua;Fan, Yue-Zu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권6호
    • /
    • pp.2823-2828
    • /
    • 2012
  • Objective: To explore a new model of in-situ xenograft lymphangiogenesis of human colonic adenocarcinomas in nude mice. Method: On the basis of establishing subcutaneous xenograft lymphangiogenesis model of human colonic adenocarcinoms, in-situ xenografts were established through the in situ growth of the HT-29 human colonic adenocarcinoma cell line in nude mice. The numbers of lymphangiogenic microvessels, the expression of lymphatic endothelial cell markers lymphatic vessel endothelial hyaloronic acid receptor-1 (LYVE-1), D2-40 and the lymphatic endothelial growth factors vascular endothelial growth factor-C (VEGF-C), -D (VEGF-D) and receptor-3 (VEGFR-3) were compared by immunohistochemical staining, Western bolt and quantitative RT-PCR in xenograft in-situ models. Results: Some microlymphatics with thin walls, large and irregular or collapsed cavities and increased LMVD, with strong positive of LYVE-1, D2-40 in immunohistochemistry, were observed, identical with the morphological characteristics of lymphatic vessels and capillaries. Expression of LYVE-1 and D2-40 proteins and mRNAs were significantly higher in xenograpfts in-situ than in the negative control group(both P<0.01). Moreover, the expression of VEGF-C, VEGF-D and VEGFR-3 proteins and mRNAs were significantly higher in xenografts in-situ (both P<0.01), in conformity with the signal regulation of the VEGF-C,-D/VEGFR-3 axis of tumor lymphangiogenesis. Conclusions: In-situ xenografts of a human colonic adenocarcinoma cell line demonstrate tumor lymphangiogenesis. This novel in-situ animal model should be useful for further studying mechanisms of lymph node metastasis, drug intervention and anti-metastasis therapy in colorectal cancer.

Runx3 inhibits endothelial progenitor cell differentiation and function via suppression of HIF-1α activity

  • SO-YUN CHOO;SOO-HYUN YOON;DONG-JIN LEE;SUN HEE LEE;KANG LI;IN HYE KOO;WOOIN LEE;SUK-CHUL BAE;YOU MIE LEE
    • International Journal of Oncology
    • /
    • 제54권4호
    • /
    • pp.1327-1336
    • /
    • 2019
  • Endothelial progenitor cells (EPCs) are bone marrow (BM)-derived progenitor cells that can differentiate into mature endothelial cells, contributing to vasculogenesis in the blood vessel formation process. Runt-related transcription factor 3 (RUNX3) belongs to the Runt domain family and is required for the differentiation of specific immune cells and neurons. The tumor suppressive role of RUNX3, via the induction of apoptosis and cell cycle arrest in a variety of cancers, and its deletion or frequent silencing by epigenetic mechanisms have been studied extensively; however, its role in the differentiation of EPCs is yet to be investigated. Therefore, in the present study, adult BM-derived hematopoietic stem cells (HSCs) were isolated from Runx3 heterozygous (Rx3+/-) or wild-type (WT) mice. The differentiation of EPCs from the BM-derived HSCs of Rx3+/- mice was found to be significantly increased compared with those of the WT mice, as determined by the number of small or large colony-forming units. The migration and tube formation abilities of Rx3+/- EPCs were also observed to be significantly increased compared with those of WT EPCs. Furthermore, the number of circulating EPCs, defined as CD34+/vascular endothelial growth factor receptor 2 (VEGFR2)+ cells, was also significantly increased in Rx3+/- mice. Hypoxia-inducible factor (HIF)-1α was upregulated in Rx3+/- EPCs compared with WT EPCs, even under normoxic conditions. Furthermore, in a hindlimb ischemic mouse models, the recovery of blood flow was observed to be highly stimulated in Rx3+/- mice compared with WT mice. Also, in a Lewis lung carcinoma cell allograft model, the tumor size in Rx3+/- mice was significantly larger than that in WT mice, and the EPC cell population (CD34+/VEGFR2+ cells) recruited to the tumor was greater in the Rx3+/- mice compared with the WT mice. In conclusion, the present study revealed that Runx3 inhibits vasculogenesis via the inhibition of EPC differentiation and functions via the suppression of HIF-1α activity.

Antivascular Therapy via Inhibition of Receptor Tyrosine Kinases in an Orthotopic Murine Model of Salivary Adenoid Cystic Carcinoma

  • Park, Young-Wook;Kang, Hye-Jeong;Park, Jung-Min
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제34권1호
    • /
    • pp.59-70
    • /
    • 2008
  • Purpose: We evaluated the therapeutic effect of AEE788, a dual inhibitor of epidermal growth factor (EGF) and vascular endothelial growth factor (VEGF) receptor tyrosine kinases on human salivary adenoid cystic carcinoma (ACC) cells growing in nude mice. Experimental Design: We examined the effects of AEE788 on salivary ACC cell growth and apoptosis. To determine the in vivo effects of AEE788, nude mice with orthotopic parotid tumors were randomized to receive oral AEE788 (50 mg/kg) three times per week, injected paclitaxel ($200{\mu}g$) once per week, AEE788 plus paclitaxel, or placebo. Mechanisms of in vivo AEE788 activity were determined by immunohistochemical analysis. Results: Treatment of salivary ACC cells with AEE788 led to growth inhibition and induction of apoptosis. AEE788 inhibited tumor growth and prevented lung metastasis in nude mice. Furthermore, AEE788 potentiated growth inhibition and apoptosis of ACC tumor cells mediated by paclitaxel. Tumors of mice treated with AEE788 and AEE788 plus paclitaxel exhibited down-regulation of activated EGFR and its downstream mediators (Akt and MAPK), increased tumor and endothelial cell apoptosis, and decreased microvessel den-sity, which correlated with a decrease in the level of MMP-9, MMP-2 and bFGF expression and a decrease in the incidence of vascular metastasis. Conclusions: These data show that tumor-associated endothelial cells are important in the process of tumor-metastasis. And VEGFR can be a molecular target for therapy of metastatic lung lesion of salivary ACC.

Novel Anti-Angiogenic and Anti-Tumour Activities of the N-Terminal Domain of NOEY2 via Binding to VEGFR-2 in Ovarian Cancer

  • Rho, Seung Bae;Lee, Keun Woo;Lee, Seung-Hoon;Byun, Hyun Jung;Kim, Boh-Ram;Lee, Chang Hoon
    • Biomolecules & Therapeutics
    • /
    • 제29권5호
    • /
    • pp.506-518
    • /
    • 2021
  • The imprinted tumour suppressor NOEY2 is downregulated in various cancer types, including ovarian cancers. Recent data suggest that NOEY2 plays an essential role in regulating the cell cycle, angiogenesis and autophagy in tumorigenesis. However, its detailed molecular function and mechanisms in ovarian tumours remain unclear. In this report, we initially demonstrated the inhibitory effect of NOEY2 on tumour growth by utilising a xenograft tumour model. NOEY2 attenuated the cell growth approximately fourfold and significantly reduced tumour vascularity. NOEY2 inhibited the phosphorylation of the signalling components downstream of phosphatidylinositol-3'-kinase (PI3K), including phosphoinositide-dependent protein kinase 1 (PDK-1), tuberous sclerosis complex 2 (TSC-2) and p70 ribosomal protein S6 kinase (p70S6K), during ovarian tumour progression via direct binding to vascular endothelial growth factor receptor-2 (VEGFR-2). Particularly, the N-terminal domain of NOEY2 (NOEY2-N) had a potent anti-angiogenic activity and dramatically downregulated VEGF and hypoxia-inducible factor-1α (HIF-1α), key regulators of angiogenesis. Since no X-ray or nuclear magnetic resonance structures is available for NOEY2, we constructed the three-dimensional structure of this protein via molecular modelling methods, such as homology modelling and molecular dynamic simulations. Thereby, Lys15 and Arg16 appeared as key residues in the N-terminal domain. We also found that NOEY2-N acts as a potent inhibitor of tumorigenesis and angiogenesis. These findings provide convincing evidence that NOEY2-N regulates endothelial cell function and angiogenesis by interrupting the VEGFR-2/PDK-1/GSK-3β signal transduction and thus strongly suggest that NOEY2-N might serve as a novel anti-tumour and anti-angiogenic agent against many diseases, including ovarian cancer.

타액선 종양에서 혈관형성 인자의 발현에 관한 면역조직화학적 비교 연구 (COMPARATIVE IMMUNOHISTOCHEMICAL ASSAYS FOR THE EXPRESSION OF ANGIOGENIC FACTORS IN TUMORS OF HUMAN SALIVARY GLANDS)

  • 인연수;김성민;박영욱
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제29권1호
    • /
    • pp.10-23
    • /
    • 2007
  • Hallmarks of clinical behaviors of adenoid cystic carcinoma(ACC) of salivary glands are the delayed onset of vascular metastasis and poor responses to classical chemotherapeutic agents. Poor prognoses from salivary ACC are caused by lung metastases that are resistant to conventional therapy. Therefore, cellular and molecular characteristics that influence the dissemination of metastatic cells are important for the design of more effective treatment of salivary ACC. Tumor angiogenesis has been known to be essential for the distant metastasis of malignant cells. So, we determined expressions of angiogenic proteins in benign (pleomorphic adenoma) and malignant (ACC, mucoepidermoid carcinoma) tumors of salivary glands and compared each other and to those in oral squamous cell carcinoma. Using surgical specimens, we performed immunohistochemical assays with anti-vascular endothelial growth factor (VEGF), VEGF receptor-2 (VEGFR-2), phosphorylated VEGFR-2 (pVEGFR-2), matrix metalloproteinase (MMP)-9, and interleukin (IL)-8 antibodies. Most angiogenic factors were overexpressed in malignant salivary tumors than in pleomorphic adenoma which is benign nature. Moreover, ACC demonstrated more expression of VEGFR-2 than that of squamous cell carcinoma which used as control. Conclusively, these data show those angiogenic factors produced by salivary gland tumors may affect the propagation and metastasis of malignant cells of salivary tumors, and could be used as biomarkers for the malignant transformation of salivary gland tumors. Prospectively, although further studies will be needed, these biomarkers related to angiogenesis can be molecular targets for the therapy of salivary ACC, which has propensity for delayed vascular metastasis.

구강 편평상피세포암 동위종양 모델에서 전이관련 인자의 발현 (EXPRESSIONS OF METASTASIS-RELATED FACTORS IN ORTHOTOPIC TUMOR MODELS OF ORAL SQUAMOUS CELL CARCINOMA)

  • 박영욱;이종원;김소희
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제30권6호
    • /
    • pp.529-539
    • /
    • 2008
  • Background and Purpose : Oral squamous cell carcinoma (OSCC) is one of the most aggressive tumors of the head and neck area. OSCC is known to preferentially metastasize via lymphatic system, and resulting cervical lymph node metastasis is the most reliable of treatment failure. But the biological mechanism of the regional nodal metastasis is not clear. So, we determined metastasis-related factors in orthotopic nude mouse models of OSCC. Experimental Design : Two cell lines-KB and YD-10B cells, established from human oral mucosal squamous cell carcinoma, were xenografted into the tissue space of athymic murine mouth floor. The mice were followed for tumor development and growth, the murine tumors were examined histopathologically for local invasion or regional or distant metastasis. Finally, we performed immunohistochemical assays with antiepithelial growth factor (EGF), EGF receptor (EGFR), phosphorylated EGFR (pEGFR), and anti-vascular endothelial growth factor (VEGF), VEGF receptor (VEGFR)-2, phosphorylated VEGFR-2/3 (pVEGFR-2/3) antibodies. We also determined the microvessel density. Results : Transplantation of human OSCC tumor cells into the mouth floor successfully resulted in the formation of orthotopic tumors. KB cell line showed significantly higher tumor proliferation and higher nodal metastatic potential than YD-10B cell line. Furthermore, immunohistochemical staining demonstrated higher expression of EGFR/pEGFR, VEGF, and pVEGFR-2/3 as well as higher microvessel density in KB murine tumors than in YD-10B murine tumors. Conclusion : An orthotopic model of OSCC in athymic mice was established which copies the cervical lymph nodal metastasis of human OSCC. Our mouth floor model should facillitate the understanding of the molecular pathogenesis of cervical nodal metastasis of OSCC.

Vascular endothelial growth factor-dependent and -independent regulation of angiogenesis

  • Shibuya, Masabumi
    • BMB Reports
    • /
    • 제41권4호
    • /
    • pp.278-286
    • /
    • 2008
  • Angiogenesis, the formation of blood vessels, is essential for preparing a closed circulatory system in the body, and for supplying oxygen and nutrition to tissues. Major diseases such as cancer, rheumatoid arthritis, and atherosclerosis include pathological angiogenesis in their malignant processes, suggesting anti-angiogenic therapy to be a new strategy for suppression of diseases. However, until the 1970s, the molecular basis of angiogenesis was largely unknown. In recent decades, extensive studies have revealed a variety of angiogenic factors and their receptors, including vascular endothelial growth factor (VEGF)-VEGFRs, Angiopoietin-Tie, Ephrin-EphRs and Delta-Notch to be the major regulators of angiogenesis in vertebrates. VEGF and its receptors play a central role in physiological as well as pathological angiogenesis, and functional inhibitors of VEGF and VEGFRs such as anti-VEGF neutralizing antibody and small molecules that block the tyrosine kinase activity of VEGFRs have recently been approved for use to treat patients with colorectal, lung, renal and liver cancers. These drugs have opened a novel field of cancer therapy, i.e. anti-angiogenesis therapy. However, as yet they cannot completely cure patients, and cancer cells could become resistant to these drugs. Thus, it is important to understand further the molecular mechanisms underlying not only VEGF-VEGFR signaling but also the VEGF-independent regulation of angiogenesis, and to learn how to improve anti-angiogenesis therapy.